
Minimizing the volume in scheduling an
outtree with communication delays and

duplication

Claire Hanen
Laboratory LIP6
4, place Jussieu

F-75 252 Paris cedex 05

Alix Munier Kordon
Laboratory LIP6
4, place Jussieu

F-75 252 Paris cedex 05

April 23, 2003

Abstract

We consider in this paper a scheduling problem with small commu-
nication delays and an unbounded number of processors. It is known
that duplication can improve the makespan of schedules. However,
scheduling algorithms may create a huge amount of duplicates. The
volume of a schedule is defined as the total number of tasks (i.e. origi-
nal and duplicates). Assuming that the tasks have the same processing
time d, that communication delays are all equal to c ≤ d and that the
precedence graph is an out-tree, we study the problem of finding the
minimum volume of a feasible schedule with makespan t. We derive
some dominance properties and prove that this problem is polynomial
using a dynamic programming algorithm.

1 Introduction

With the recent development of parallel architectures arise a new class of
scheduling problems in which communication delays are considered. The
target machine is a set of parallel processors connected by a network. A
parallel program is modeled as usual by a directed acyclic graph, the nodes

1

of which are tasks. An arc from task i to task j means that i computes data
that is an input for j. If these two tasks are not performed by the same
processor, a delay must be considered between the completion of i and the
beginning of j to dispatch the data through the network. The aim is to find
a schedule that minimizes the makespan.

Several studies are devoted to this kind of problems (c.f. the two surveys
[3, 11]). Most of them are NP-hard even with very strong assumptions. For
example, if we assume unitary processing times and unitary communication
delays (UET-UCT task systems), and if a non restricted number of proces-
sors are available, Picouleau proved in [9] that the makespan minimization
problem denoted by P |prec, cjk = 1, pj = 1|Cmax is NP-hard.

Task duplication might be useful to reduce the influence of communication
delays. Indeed, if a task i has several successors j1, . . . , jk, then performing
task i on k processors may allow the execution of j1, . . . , jk on these processors
just after i, avoiding communication through the network.

This feature also reduces the problem complexity : if communication
delays are less than or equal to the processing times of the tasks, Colin
and Chrétienne [4] proved that the makespan minimization problem on an
unbounded number of processors is polynomial.

Unfortunately, if no assumption is made on the communication delays,
the problem P |prec, cjk = c > 1, pj = 1, duplication|Cmax is NP-hard [8]. So
the UET-UCT assumption seems to be a borderline between easy and hard
problems if duplication is allowed.

However, in computer systems, duplication is not costless. Indeed, the
initial data for each duplicated task must be sent to each processor through
the network. And, while the network bandwidth is supposed without limita-
tions, too many duplicates may limit the system performance.

Existing scheduling algorithms for tasks systems on an unlimited num-
ber of processors make use of a great number of duplicates. In order to
reduce it, one can solve the scheduling problem assuming a limited number
of processors. But then the problems become difficult to handle, even for
simple graph structures. An outcome of the result of Veltman [10] is that
P |in− tree, cjk = 1, pj = 1, duplication|Cmax is NP-hard (in this case dupli-
cation is useless). Some approximations results can also be mentioned : we

proved in [7] that a greedy algorithm with relative performance equal to 2− 1

m
can be developed for the problem P |prec, cjk = 1, pj = 1, duplication|Cmax.

2

In [8] an approximation algorithm for P |prec, cij, pj, duplication|Cmax with
worst case performance ratio 2 is developed, and Munier proved in [6] that
the ideas of this algorithm can be used to solve P |tree, cij, pj|Cmax with a

relative performance bounded by 1 + (1− 1

m
)(2−

1 + ρ
), where m denotes

the number of processors, ρ the ratio between communication delays and
processing times.

The control of the number of duplicates is tackled by another way in this
paper. We still consider an unbounded number of processors, and we study
the minimization of the whole number of duplicates, called the volume of the
schedule, among the feasible schedules with a makespan at most t. As the
problem can be easily proven NP-hard for general graph structures, or general
communication delays, we focus on a sub-problem, in order to develop tools
that might later be used for deriving approximation and/or lower bounds for
more general settings. We assume that the precedence structure is an out-
tree, that all tasks have same duration d, and that communication delays are
all equal to c ≤ d.

Section 2 presents the problem and several useful dominance properties.
In the third section, we prove a recurrence equation satisfied by the mimimum
volume of sub-trees. In section 4, we propose a polynomial time algorithm
to determine the minimum volume for any value t of the makespan, together
with a feasible schedule that realizes it. In section 5, we present some exper-
imental results. The last section discuss the perspectives of this work.

2 Problem Formulation

Let us consider a set T of tasks with duration d ∈ IN∗ indexed from 1 to |T |
and an out-tree A rooted by task 1. ∀i ∈ T , A(i) denotes the sub-tree of A
rooted by i and, if i 6= 1, p(i) denotes the unique immediate predecessor of i
in A. ∀i ∈ T , Γ+(i) is the set of immediate successors of i in A. We consider
that the tasks are numbered such that, ∀j ∈ Γ+(i), i < j. We suppose that
the value of the communication delays is c ∈ IN∗ with c ≤ d.

We consider the problem of scheduling task set T on an unbounded num-
ber of processors allowing duplication. A feasible schedule assigns to each
task a set of duplicates, also called copies, and to each copy a non-negative
starting time and a processor, such that if j ∈ Γ+(i) for any copy of j starting

3

at time β on a processor π, either a copy of i starts on a processor π′ 6= π at
the latest at time β − d− c or a copy of i starts on the same processor π at
the latest at time β − d .

The makespan of a feasible schedule is the difference between the last
completion time of a duplicate, and the start time of the first copy of the
root of A.

For any feasible schedule σ, we denote by Πi(σ) the set of processors
performing i ∈ T and by ni(σ) the number of copies of i. v(σ) is the total
number of tasks (i.e. , original and duplicates) of σ. Clearly,

v(σ) =
∑

i∈T

ni(σ)

We call this value the volume of σ. If there is no confusion, σ may be omitted
in the notations.

Recall that in this article we are interested in determining the minimum
volume of a schedule with makespan at most t. Given t ∈ IN∗ we denote by
S(t) the set of feasible schedules with makespan bounded by t, and by S∗(t)
the subset of schedules of S(t) with minimum volume. We denote by V ∗(t)
the volume of a schedule in S∗(t).

A set S ′ ⊂ S(t) is said to be dominant if S ′ ∩ S∗(t) 6= ∅. In order to
reduce the combinatorics of our scheduling problem, we prove three domi-
nance properties 1, 2 and 3, that allow us to consider a dominant subset of
schedules.

Property 1 The set of feasible schedules verifying the two following proper-
ties is dominant: for any task i > 1, let us consider a processor π ∈ Πi.

1. If π ∈ Πi(σ) ∩ Πp(i)(σ) and if p(i) is performed by π at time γ, then i
is performed by π at γ + d.

2. If π ∈ Πi(σ)−Πp(i)(σ) and if the starting time of the earliest execution
of p(i) is α, then i is performed by π at α + c + d,

Proof
Let σ be a feasible schedule in S(t) and i a task. We prove that if σ does
not satisfy one of the dominance properties for some copy of task i, then a
schedule σ′ ∈ S(t) with v(σ′) ≤ v(σ) that meets the requirements for this
copy of i can be built.

4

1. Assume that condition 1 is not satisfied. If for some processor π ∈
Πi(σ)∩Πp(i)(σ), p(i) starts at γ on π, then a copy of i is performed by
π at time γ + d + ε, for some ε > 0. If ε ≥ c then we can build a new
schedule by moving the copy of i and all the tasks in A(i) performed on
π in σ from π to a new processor π′ with the same starting times (so that
condition 2 may not be satisfied, and the rule of next paragraph may
be applied). Otherwise, ε < c ≤ d so that no task can be performed
on π between p(i) and i. Hence, without violating the precedence
constraints, the copy of i can start on π at time γ + d.

2. Assume that condition 2 is not satisfied. Then a copy of i starts on
some processor π at time β, while the first copy of p(i) starts on another
processor π′ at time α. As σ is feasible, β ≥ α + d + c. If β > α + c + d
then we can remove i and all the tasks in A(i) performed on π in σ
from π, and assign the copies on a new processor π′′ as follows: start i
at time α+ c+d, and schedule the other removed copies with the same
sarting times as in σ. The new schedule is feasible and its makespan is
at most t.

By applying these transformations iteratively to each copy of each task
in increasing order of number and starting times, then a schedule σ′ that
satisfies the two properties and has at most the volume and the makespan of
σ can be built. Hence if σ ∈ S∗(t) then so is σ′.

In the following we consider only feasible schedules that meet property 1.

Property 2 The set of feasible schedules σ such that, for any task i ∈ T ,
the executions of i are all performed at the same time denoted by ti(σ), is
dominant.

Proof
Let σ ∈ S(t) be a feasible schedule. Let i be the task with minimum index
with two different execution times respectively β and β + k with k > 0. We
build a schedule with makespan less than t and volume less than v(σ) such
that for any task j ≤ i, all copies of j are performed at the same time.

If i = 1, then we can obviously perform all the copies of the root at the
same time β without violating precedence constraints. Hence, we consider
i > 1.

5

Since p(i) < i, all the copies of p(i) are performed at the same time α.
By property 1, the copies of i are performed either at time α + d or at time
α+d+c. Hence β = α+d, k = c. Since the first instance of i is performed at
time β, any task j from Γ+(i) should start, according to property 1, at most
at time β +d+c, which is exactly the completion time of the second instance
of i. So, this instance can be removed without violating any precedence
constraint. Obviously, this can be done with any copy of i that is performed
after β.

Applying iteratively this procedure to a schedule σ ∈ S∗(t) leads to an
optimal schedule that satisfies property 2.

Notice that the property 2 is not true anymore if the communication
delays are not all equal to c. For example, let us consider the five tasks
T = {1, 2, 3, 4, 5} of duration 6 and the out-tree pictured by figure 1. For
t = 20, the optimum schedule has two executions of task 2 with distinct
starting times.

1

2

3 4

2

44

1 2 3

2 4

20

5

5

2

d = 6

Figure 1: A counter example for property 2. Arcs of the out-tree are valued
by the communications delays.

In the following we assume that feasible schedules satisfy properties 1 and
2. Let us now present our last dominance property:

Property 3 Let i ∈ T . The set of schedules σ such that, for all i ∈ T ,

ni(σ) = max{1, ∑

j∈J

nj(σ)}

with J = {j ∈ Γ+(i)|tj(σ) = ti(σ) + d} is dominant.

Proof
If J = ∅ then by property 2, all successors j of i satisfy tj(σ) = ti(σ) + d + c.

6

Hence only one copy of i performed at time ti(σ) is sufficient to meet the
precedence constraints. So if ni(σ) > 1, then we can remove useless copies
of i and get a feasible schedule with a lower volume until ni(σ) = 1.

If J 6= ∅, by property 2, all the executions of j ∈ Γ+(i) are performed
at time ti(σ) + d, so J = Γ+(i). Moreover, for any copy of j performed
on a processor π, there must be a copy of i that is performed just before
on the same processor. Hence ni(σ) ≥ ∑

j∈J nj(σ). If there a copy of i is
not mapped with some task of J , it can be removed without violating the
precedence constraints.

Hence in both cases, one can build a schedule σ′ with v(σ′) ≤ v(σ) such
that ni(σ

′) = max{1, ∑
j∈J nj(σ

′)}. Applying this transformation iteratively
leads the property 3.

In order to get an upper bound on the number of copies in any feasible
schedule σ satisfying the dominance properties 1, 2 and 3 we denote by li
the number of leaves of A(i). We can then stress the following property:

Property 4 ∀i ∈ T, ni(σ) ≤ li.

Proof
We prove it by recurrence on the tree structure.

• If task i ∈ T is a leaf, then by property 3, ni(σ) = 1 = li.

• Otherwise, by recurrence, if J is defined as previously for task i,

ni(σ) ≤ max(1,
∑

j∈J

lj) ≤
∑

j∈Γ+(i)

lj

In the rest of the paper, feasible schedule means that the schedule is
feasible and satisfies properties 1, 2 and 3.

3 A recurrence relation

The aim of this part is to compute the minimum volume V ∗(t) for any t ∈ IN∗

and a corresponding schedule. First, we present a small example to illustrate

7

some simple remarks on the structure of optimal schedules. Then, we intro-
duce some additional notations and variables and we prove the recurrence
relation on which the computation of V ∗(t) will be based.

Let us consider the small example pictured by figure 2. The first schedule
has a minimum number of duplicates. This example leads to the two following
remarks :

• Even if the completion time has a minimum value, there is no need to
duplicate any path from the root to a leaf to get a feasible schedule as
the algorithm in [4] does. It is clear that this algorithm produces an
important number of useless duplicates.

• If we decide not to duplicate task 7, we get a schedule of volume equal
to 12. So, we must here duplicate an internal node without duplicating
its predecessor. This means that the structure of solutions may be
much complicated than in the case where the number of duplicates is
not limited.

We now introduce some notations that will be useful to derive a dynamic
programming scheme for the computation of V ∗(t).

∀i ∈ T, ∀t ∈ IN∗ and ∀n ∈ IN∗, we will denote by

• Si(t) the set of feasible schedules of A(i) with makespan at most t,

• Vi(t) = minσ∈Si(t) v(σ). If Si(t) = ∅, Vi(t) = +∞.

• Si(n, t) the subset of schedules of Si(t) such that the root i has at most
n copies.

• Vi(n, t) = minσ∈Si(n,t) v(σ). If Si(n, t) = ∅,Vi(n, t) = +∞.

Clearly, Si(n, t) ⊆ Si(n + 1, t), so Vi(n, t) ≥ Vi(n + 1, t). Moreover, by
property 3, we get

Si(t) =
⋃

n∈IN∗
Si(n, t) = Si(li, t)

Hence
Vi(t) = min

n∈{1,...,li}
Vi(n, t) = Vi(li, t)

With the previous definitions it can be directly established that:

8

1 2 3

4 5 6

7

8

9

1 2 3 4 5 6

7

7

8

9

c = d = 1
t = 6

7 is duplicated,
but not its
predecessor.
v()=10

1 2 3 4 5 6

1 2 3 7 8

9

7 is not duplicated.
This schedule is not
optimal.
v()=12σ

σ

Figure 2: Two remarks concerning the structure of an optimal schedule

Lemma 1 If j is a leaf then ∀t ≥ d, Vj(1, t) = 1 and ∀t < d, Vj(1, t) = +∞.
If j is any node and n > lj, then Vj(n, t) = Vj(lj, t)

Now, we can prove the following inequality :

Lemma 2 Let σ ∈ Si(n, t) and J be the set of immediate successors of i
starting their executions at the completion time of i. Then,

v(σ) ≥ max{1, ∑

j∈J

(nj(σ) + Vj(nj(σ), t− d))}+
∑

j∈Γ+(i)−J

Vj(lj, t− d− c)

Proof
Tasks (copies) performed by σ can be partitioned into 3 sets :

• The set of copies of i. By definition, ni(σ) = max{1, ∑
j∈J nj(σ)}.

• The set of tasks from A(j), for j ∈ J . The volume of the sub-schedule
of σ for A(j) is by definition at least Vj(nj(σ), t− d).

9

• The set of tasks from A(j), for j ∈ Γ+(i)− J . The volume of the sub-
schedule of σ for A(j) is greater than Vj(nj(σ), t− d− c). By property
3, nj(σ) ≤ lj, so Vj(nj(σ), t− d− c) ≥ Vj(lj, t− d− c).

The following theorem will be obtained by proving the converse inequal-
ity :

Theorem 1 ∀t ∈ IN∗, ∀i ∈ T such that Γ+(i) 6= ∅, ∀n ≤ li,

Vi(n, t) = 1J=∅ + min
J⊂Γ+(i)

{ ∑

j∈Γ+(i)−J

Vj(lj, t− d− c)

+ min
0<nj≤lj ,

∑
j∈J

nj≤n

∑

j∈J

nj + Vj(nj, t− d)}

Proof
Let σ ∈ Si(n, t) be a schedule with a minimum volume v(σ) = Vi(n, t). By
lemma 2, Vi(n, t) is greater than the right term of the equality. If this term
is infinite, also is Vi(n, t).

Conversely, suppose now that this term is finite. Then, we can build an
optimal schedule of Si(n, t) by induction using the following scheme :

(B) If i is a leaf, since Vi(n, t) is finite necessarily we have t ≥ d. Hence, we
can perform one execution of i at time 0, obtaining a volume of 1.

(I) If i is not a leaf, Γ+(i) 6= ∅. Let J∗ be a subset of Γ+(i) that realizes
the right term of the equality and the associated numbers of executions
n∗j > 0, j ∈ J∗.

Let σj be a schedule of volume Vj(n
∗
j , t − d) for j ∈ J∗ and of volume

Vj(lj, t − d − c) for j ∈ Γ+(i) − J∗. Let us assign disjoint subset of
processors to the schedules σj, j ∈ Γ+(i).

1. ∀j ∈ Γ+(i) − J∗, make a right shift on σj so that the first task
starts at time d + c. As the makespan of σj is at most t − d − c,
the resulting schedule has a makespan at most t.

2. if J∗ = ∅, perform a copy of i at time 0.

10

3. Otherwise, for each j ∈ J∗, shift σj so that j starts at time d. On
each of the n∗j processors that perform a copy of j, start a copy of
i at time 0.

It is clear that this schedule is feasible and its volume is exactly the
right term of the equality.

4 Computation of the volumes

In this section, we prove that the volumes Vi(n, t) may be polynomially com-
puted using the relation expressed by theorem 1. Firstly, we reduce the total
number of useful values of the state variable t ∈ IN to a finite set of polyno-
mial size. Then, we introduce some intermediate steps for the computation
of Vi(n, t). Lastly, we evaluate the complexity of this algorithm.

Time domain From property 1, the makespan of any schedule from S1(t),
t ∈ IN starting at time 0 can be decomposed as tα,β = αd + β(d + c), with
(α, β) ∈ IN × IN . Now, let us consider t∗ the minimal length of a schedule
of A without duplication (this value can be polynomially computed by the
algorithm of P.Chrétienne [2]). t∗ is bounded by |T |d + (|T | − 1)c.

1. ∀t ≥ t∗, A may be scheduled with makespan t∗ without duplication, so
V1(t) = V1(t

∗) = |T |.
2. ∀t such that d ≤ t < t∗, let tα,β be the greatest value tα,β such that

tα,β ≤ t. Then Vi(t) = Vi(tα,β).

3. If t < d, there is no feasible schedule, so Vi(t) = +∞.

So, we will limit the time domain τ to the values tα,β with α ≤ dt
∗

d
e,

β ≤ d t∗
(d+c)

e and αd + β(d + c) ≤ t∗. The size of this domain is roughly

bounded by |T |2.

11

Computation of Vi(n, t) Let us consider a task i ∈ T such that Γ+(i) 6= ∅.
In order to compute the recurrence equation of theorem 1, we decompose it
over the set of successors of i. We suppose that, for every j ∈ Γ+(i),∀n′ ≤ lj
and ∀t′ ∈ τ we have computed Vj(n

′, t′). The aim is here to compute Vi(n, t),
∀n ≤ li and ∀t ∈ τ .

Let us consider Γ+(i) = {j1, . . . , j|Γ+(i)|} the set of immediate successors
of i. ∀k ∈ {1, . . . , |Γ+(i)|}, we will denote by Fi(n, t, k) the minimum volume
of a schedule σ of the subgraph A(i)−A(jk+1) . . .−A(j|Γ+(i)|) such that :

1. the makespan of σ is at most t,

2. ni(σ) ≤ n,

3. there is at least one j ∈ {j1, . . . , jk} such that tj(σ) = ti(σ) + d.

Let us consider a feasible schedule σ ∈ Si(n, t).

• If no successor of i is performed at the completion time of i in σ, then
v(σ) ≥ 1 +

∑
j∈Γ+(i) Vj(lj, t − d − c). The right term of the inequality

is the volume of a schedule built by performing a single copy of i at
time 0, and starting at time d+ c the schedules of A(j), j ∈ Γ+(i) with
volumes Vj(lj, t− d− c). Hence Vi(n, t) ≤ 1 +

∑

j∈Γ+(i)

Vj(lj, t− d− c)

• Otherwise, at least one successor of i is performed at its completion
time and we get v(σ) ≥ Fi(n, t, |Γ+(i)|). Similarly, the right term is the
volume of a feasible schedule with at most n copies of i and makespan
at most t, so that Vi(n, t) ≤ Fi(n, t, |Γ+(i)|).

Hence, if we consider a schedule σ such that v(σ) = Vi(n, t), we get:

Vi(n, t) = min{Fi(n, t, |Γ+(i)|), 1 +
∑

j∈Γ+(i)

Vj(lj, t− d− c)}

The second term of this minimum can be easily computed. We will
present now how to compute the value Fi(n, t, k) by recurrence on k ∈
{1, . . . , |Γ+(i)|}.

• If k = 1, then j1 is performed at the end of i, so

Fi(n, t, 1) = min
1≤m≤n

(m + Vj1(m, t− d))

12

• Now, let us consider k > 1. By theorem 1 and since J 6= ∅, we get :

Fi(n, t, k + 1) = min
J⊆{j1,...jk+1},J 6=∅

{ ∑

j∈{j1,...jk+1}−J

Vj(lj, t− d− c)+

min
0<nj≤lj ,

∑
j∈J

nj≤n

∑

j∈J

(nj + Vj(nj, t− d))}

Let J∗ be an optimal subset (for which the right term of the previous
equality is minimum). Three cases may occur :

1. If jk+1 6∈ J∗, then there is a communication delay between i
and jk+1 and thus the sub-schedule of A(jk+1) has a makespan
bounded by t − d − c and an unconstrained number of copies of
jk+1 :

Fi(n, t, k + 1) = Vjk+1
(ljk+1

, t− d− c) + Fi(n, t, k)

2. If J∗ = {jk+1}, then the sub-schedules of A(jl), 1 ≤ l ≤ k have a
makespan bounded by t−d− c, the sub-schedule of A(jk+1) has a
makespan bounded by t− d and to each copy of jk+1 corresponds
a copy of i. So we get:

Fi(n, t, k + 1) =
∑

j∈{j1,...,jk}
Vj(lj, t− d− c)

+ min
1≤m≤n

(m + Vjk+1
(m, t− d))

3. Otherwise, {jk+1} ⊂ J∗ and thus the sub-schedule of i and the sub-
trees A(jl), 1 ≤ l ≤ k satisfy the requirements of Fi(n −m, t, k)
for some m. As previoulsy the sub-schedule of A(jk+1) has a
makespan bounded by t− d and to each copy of jk+1 corresponds
a copy of i. Hence we get :

Fi(n, t, k+1) = min
1≤m<min(n,ljk+1

)
(m+Vjk+1

(m, t−d)+Fi(n−m, t, k))

Fi(n, t, k + 1) will be obtained by getting the minimum of these 3 values.

13

Complexity of the algorithm Let us consider i ∈ T , n ∈ {1, . . . , li} and
t ∈ τ . The complexity of the computation of Vi(n, t) is O(|Γ+(i)|(|Γ+(i)|+n)).
We deduce that the complexity of Vi(n, t), n ∈ {1, . . . , li} is O(|Γ+(i)|)l2i . So,
the complexity of the computation of every value Vi(n, t) is O(|T |3.|τ |) =
O(|T |5).

For a fixed value t, an optimal schedule associated with V1(t) can be built
using a recursive algorithm of complexity also bounded by O(|T |5).

5 Experimental results

For these experiments, we generated random trees using algorithms presented
in [1]. The questions that we aimed to answer, depending on the parameters
of the input, were the following:

• What improvement of the makespan can be expected from using du-
plication?

• What is the minimal cost of such an improvement (in terms of number
of duplicates)

For 100 tasks and several values of the ratio ρ =
c

d
, we generated 500

instances of the scheduling problem and we computed the following values:

1. Percentage of duplication, ie. the percentage of instances belonging
to the set T for which the duplication reduces the minimum makespan
of a schedule.

2. Average value of improvement, ie. if Cmax(A) (Resp. Cd
max(A))

for A ∈ T denotes the minimal value of a schedule of A without
(Resp. with) duplication, we computed the average value of the ra-

tio
Cmax(A)− Cd

max(A)

Cmax(A)
.

3. Average minimum volume, ie. the average of the volume V (Cd
max(A))

for every A ∈ T .

The following table summarizes our results:

14

ρ 1 0.75 0.5 0.25 0.1
Percentage of duplication 30% 24% 20% 26% 26%

Average value of improvement 4.5% 3.5% 1.4% 1.1% 0.4%
Average minimum volume 138 140 135 144 140

We observed that experimentally, duplication doesn’t seem to reduce the
makespan of the optimal schedule significantly and the results presented here
are quite poor. Our explanation is that the structure of the trees randomly
generated is very irregular and such that every node has a few number of
immediate successors. For this class of trees, the duplication doesn’t dra-
matically improve the makespan of the schedules. But the improvement has
an important cost since the number of duplicates is between 35% and 40%
of the number of tasks. Notice that the results are slightly better for ρ = 1.
However, the small improvement of the makespan due to duplication makes
difficult on our random trees other kind of experiments that could have been
interesting, for example as measuring the variation of the minimum volume
according to the makespan of the schedule.

Further research may lead us to look for some particular structures for
which the improvement is significant, in order to answer the following ques-
tion: if we allow a makespan which is α ∗ Copt

max then the minimum volume
will be β ∗ |T |. How can β be expressed in terms of α?

We actually think that full binary trees are good candidates for such a
study. Indeed, the duplication improves significantly the makespan, as shown
by the following table for a tree fo heigt 6 (i.e. with 127 nodes).

ρ 1 0.75 0.5 0.25 0.1
Average value of improvement 46% 40% 30% 17.6% 7.8%

Average minimum volume 448 448 448 448 448

Figure 3 shows, for a full binary tree of height 6, the variations of the
minimum volume with respect to the makespan for the values ρ = 1 and
ρ = 0.5.

15

448

7 10 13

volume

makespan

ρ = 1

ρ = 0.5

Figure 3: Optimal volume according to the makespan for a full binary tree
with ρ = 1 and ρ = 0.5

In [5], Jung et al. proved that, for a full binary tree of n nodes, any

schedule with makespan t has a volume greater than
d

c
n

c
2dt . Notice that, in

our case (i.e. n = 127 and small communication value), this bound is very

far from the optimal value. For example, for ρ = 1 we get n
1
2t which is even

less than n. Better lower bounds for small communication delays should be
interesting to investigate.

6 Perspectives

In this paper, we introduced a new objective function for scheduling with
communication delays in order to reduce both the number of duplicates and
the makespan. We proved that the minimization of the volume for an out-
tree with equal processing times d and equal communication delays c ≤ d is
polynomial. Many questions arose from this result, as :

• Is it possible to predict the number of duplicates necessary to get a
bounded error with respect to the optimal makespan?

• Is it possible to extend these results to other special classes of prece-
dence graphs ?

• Is it possible to use this result for minimizing the makespan for a
scheduling problem with communication delays and a limited number
of resources ?

16

7 Acknowledgement

We wish to thank F.Guinand and the anonymous referee for the their helpful
remarks concerning the readability and motivations of this paper.

References

[1] L Alonso and R Schott. Random Generation of trees. Kluwer academic
Publishers, 1995.

[2] P Chrétienne. A polynomial time to optimally schedule tasks over an
ideal distributed system under tree-like precedence constraints. Euro-
pean Journal of Operational Research, 2:225–230, 1989.

[3] P Chrétienne and C Picouleau. Scheduling with communication delays :
a survey. In P Chrétienne, E.G Coffman, J.K Lenstra, and Z Liu, editors,
Scheduling Theory and its Applications, pages 65–89. John Wiley Ltd,
1995.

[4] J-Y Colin and P Chrétienne. C.p.m scheduling with small communi-
cation delays and task duplication. Operations Research, 39:681–684,
1991.

[5] H Jung, L Kirousis, and P Spirakis. Lower bounds and efficient al-
gorithms for multiprocessor scheduling of dag’s with communication
delays. In 1.SPAA, pages 254–264, 1989.

[6] A Munier. Approximation algorithms for scheduling trees with general
communication delays. Parallel Computing, 25:41–48, 1999.

[7] A Munier and C Hanen. Using duplication for scheduling unitary tasks
on m processors with communication delays. Theoretical Computer Sci-
ence, (178):119–127, 1997.

[8] C Papadimitriou and M Yannakakis. Towards an architecture inde-
pendent analysis of parallel algorithms. SIAM Journal on Computing,
19:322–328, 1990.

17

[9] C Picouleau. Two new NP-complete scheduling problems with commu-
nication delays and unlimited number of processors. Discrete Applied
Mathematics, 60:331–342, 1995.

[10] B Veltman. Multiprocessor scheduling with communication delays. PhD
thesis, CWI-Amsterdam, 1993.

[11] B Veltman, B.J. Lageweg, and J.K Lenstra. Multiprocessor scheduling
with communication delays. Parallel Computing, 16:173–182, 1990.

18

