
Polynômes et nombres complexes
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1 Polynômes

Définition 1 (Polynôme). Un polynôme à coefficients réels est une suite de nombres réels
ayant un nombre fini de termes non nuls. L’indice du dernier terme non nul est appelé le
degré du polynôme. La suite dont tous les termes sont nuls est appelée polynôme nul et
son degré et −∞. L’ensemble des polynômes à coefficients réels est noté R[X].

Si q ∈ N est le degré du polynôme P , on note q = do(P ) et P = (a0, . . . , aq) où aq 6= 0,
nécessairement. On peut aussi noter P en utilisant l’indéterminée X de la façon suivante :

P =

q∑
i=0

aiX
i = a0 + a1X + · · ·+ aqX

q .

Un polynôme P de degré zéro est une suite dont seul le premier terme a0 est non nul.
Un tel polynôme est appelé polynôme constant, est identifié à son premier terme et on
note P = a0.
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Addition des polynômes

Soit P et Q deux polynômes. Le polynôme P +Q est le polynôme dont les coefficients
sont les sommes terme à terme des coefficients de P et Q. Si P = (a0, . . . , ap) et Q = (b0, ,̇bq)
avec p ≤ q, alors

P +Q =

{
(a0 + b0, . . . , ap + bp) si p = q ,

(a0 + b0, . . . , ap + bp, bp+1, . . . , bq) si p < q .

En notation avec l’indeterminée, on a, si p ≤ q,

P +Q =

p∑
i=0

(ai + bi)X
i +

q∑
i=p+1

biX
i

où la deuxième somme est nulle par convention si p = q.

Multiplication des polynômes

Soit P = (a0, . . . , ap) et Q = (b0, . . . , bq) deux polynômes. Le polynôme PQ est le
polynôme dont les coefficients cj sont définis par

cj =

j∑
i=0

aibj−i , 0 ≤ j ≤ p+ q

en posant ai = 0 si i > p et bi = 0 si i > q. Le polynôme PQ est de degré do(P ) + do(Q).
Son terme de plus haut degré est apbqX

p+q. Si on utilise l’indéterminée X, on écrit

PQ =

p+q∑
j=0

(
j∑
i=0

aibj−i

)
Xj ,

toujours avec la convention ai = 0 si i > p et bi = 0 si i > q. Notamment pour j = p + q,
le seul terme de la somme est apbq et est nécessairement non nul.

Exemple Soit P = 3X2 +X + 1 et Q = X3 −X2 + 2. Alors

PQ = (3X2 +X + 1)(X3 −X2 + 2) = 3X5 − 2X4 + 5X2 + 2X + 2 .

Multiplication par une constante Soit P un polynôme et soit Q un polynôme con-
stant, Q = c, c ∈ R. On notera cP le polynôme PQ, dont les coefficients sont les coefficients
de P multipliés par c. Si c 6= 0, alors do(cP ) = do(P ). Si c = 0 alors cP = 0.

1.1 Division euclidienne

Théorème 1. Soit A et B deux polynômes, B 6= 0. Il existe un unique couple de polynômes
(Q,R) tels que

A = BQ+R , do(R) < do(B) .
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Remarques

– L’unicité du couple (Q,R) est garantie par la condition do(R) < do(B).
– Si le reste de la division euclidienne de A par B est nul, on dit que B divise A, ou

que B est un diviseur de A ou que A est un multiple de B.
– Les constantes non nulles divisent tous les polynômes.

Exemples

Division euclidienne de X4 +X2 + 1 par X2 + 1.

X4 +X2 + 1 = X2(X2 + 1) + 1 .

Division euclidienne de X4 +X2 + 1 par X2 +X + 1.

X4 +X2 + 1 = (X2 +X + 1)(X2 −X + 1) .

On obtient donc que X2 +X + 1 et X2 −X + 1 divisent X4 +X2 + 1.

Définition 2 (Polynôme irréductible). Un polynôme P est dit irréductible si ses seuls
diviseurs sont les constantes et ses multiples constants cP , c ∈ R.

Proposition 1. Les polynômes de degré 1 sont irréductibles.

1.2 Fonction polynôme

Définition 3 (Fonction polynôme). Soit P un polynôme à coefficients réels, P = (a0, . . . , aq).
On appelle fonction polynôme associée à P la fonction définie sur R par

x→
q∑
i=0

qix
i .

Par abus de notation, on note encore P cette fonction, et sa valeur en x est notée P (x).

Remarque Il faut bien faire la différence entre l’expression a0 + a1X + · · · + aqX
q, qui

est un polynôme, élément de l’ensemble R[X], et, pour chaque x ∈ R, le nombre réel
a0 + a1x+ · · ·+ aqx

q, obtenu comme l’évaluation de la fonction polynôme associée P en x.
Ce sont deux objets mathématiques de natures absolument différentes.

Définition 4 (Racine d’un polynôme). Soit P un polynôme. Le nombre réel λ est appelé
racine de P si la fonction polynôme associée à P s’annule en λ.

Proposition 2. Soit P un polynôme. Le nombre réel λ est une racine de P si et seulement
si X − λ divise P .
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On obtient comme conséquence immédiate de ce résultat que si P est de degré 2, P est
irréductible si et seulement si P n’admet pas de racines réelles. Rappelons qu’un polynôme
de degré 2 aX2 + bX + c, a 6= 0 admet des racines si et seulement si b2 − 4ac > 0, et se
factorise alors de la façon suivante

aX2 + bX + c = a

(
X − −b+

√
b2 − 4ac

2a

)(
X − −b−

√
b2 − 4ac

2a

)
.

Théorème 2. Les seuls polynômes irréductibles de R[X] sont les polynômes de degré 1 et
les polynômes de degré 2 sans racines réelles.

Définition 5 (Racine multiple). Soit P un polynôme. Le réel λ est une racine de multi-
plicité (exactement) m si (X − λ)m divise P et (X − λ)m+1 ne divise pas P .

1.3 Décomposition en facteurs irréductibles

Théorème 3. Tout polynôme non nul P peut s’écrire de façon unique comme un produit
de puissances de polynômes irréductibles :

P = a

q∏
i=1

(X − λi)qi
p∏
i=1

(X2 + biX + ci)
pi ,

où
– a 6= 0 ;
– les nombres réels λi sont deux à deux distincts et les nombres qi sont des entiers non

nuls appelés multiplicités respectives des racines λi ;
– les couples de réels (bi, ci) sont deux à deux distincts et tels que b2i − 4ci < 0 ; les

nombres pi sont des entiers non nuls.

Exemple On a déjà vu que l’on peut factoriser X4 +X2 + 1 de la facçon suivante :

X4 +X + 1 = (X2 +X + 1)(X2 −X + 1) .

Or X2 +X + 1 et X2−X + 1 n’ont pas de racines réelles donc sont irréductibles, donc on
a bien obtenu la décomposition en facteurs irréductibles de X4 +X2 + 1.

Corollaire 1. Soit P un polynôme admettant n racines disctinctes. Alors doP ≥ n.

Corollaire 2. Soit P un polynôme de degré au plus n tel que la fonction polynôme associée
à P s’annule en n+ 1 nombres réels distincts. Alors P est le polynôme nul.

Ce résultat peut être utilisé de la façon suivante. Si P et Q sont deux polynômes de
degré au plus n, et telle que les fonctions polynômiales associées cöıncident en n+1 nombres
réels disctints, alors P = Q. Nous donnons deux applications de ce résultat très utile.
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Exemple Soit P un polynôme quelconque. Grâce au résultat précédent, on peut identifier
le reste de la division euclidienne de P par X2−1 sans avoir besoin de l’effectuer. Soit Q et
R le quotient et le reste de la division euclidienne de P par X2−1, i.e. P = (X2−1)Q+R,
avec do(R) ≤ 1. Puisque −1 et 1 sont les racines de X2 − 1, si l’on évalue P en −1 et 1,
on obtient

P (1) = R(1) , P (−1) = R(−1) .

Soit S = aX + b un poylnôme de degré au plus 1 qui cöıncide avec P en 1 et −1. On a
alors

a+ b = P (1) , −a+ b = P (−1) ,

d’où

a =
P (1)− P (−1)

2
, b =

P (1) + P (−1)

2
.

Le polynôme S ainsi défini cöıncide avec R en 1 et −1, R et S sont de degré au plus 1,
donc R = S. On a donc identifié le reste de la division euclidienne de P par X2 − 1, sans
connâıtre P explicitement.

Polynômes interpolateurs de Lagrange

Soit x1, . . . , xn n nombres réels deux-à-deux distincts et soit y1, . . . , yn n nombres réels.
On peut toujours supposer que les xi sont ordonnés, i.e. x1 < · · · < xn. Le problème de
l’interpolation consiste à trouver une fonction f définie au moins sur l’intervalle [x1, xn]
telle que f(xi) = yi. On peut considérer plusieurs méthode, chacune ayant sa justification
et ses limitations propres. Nous considérons ici le problème de l’interpolation polynômiale.

Théorème 4. Soit x1, . . . , xn n nombres réels deux-à-deux distincts et soit y1, . . . , yn n
nombres réels. Il existe un unique polynôme de degré au plus n − 1 tel que la fonction
polynôme associée à P prenne la valeur yi en xi, soit avec un abus de notation, P (xi) = yi.

Démonstration. Il s’agit d’un résultat d’existence et d’unicité. Nous allons prouver l’exis-
tence en exhibant un tel polynôme, et l’unicité en utilisant le Corollaire 2. Pour j = 1, . . . , n,
soit Qj le polynôme défini par

Qj =
yj∏

i 6=j(xj − xi)
∏
i 6=j

(X − xi) .

Chaque polynôme Qj vérifie doQ = n− 1 si yj 6= 0 et Qj = 0 si yj = 0, Qj(xi) = 0 si i 6= j
et Qj(xj) = yj. Soit maintenant P le polynôme défini par

P =
n∑
j=1

Qj =
n∑
j=1

yj∏
i 6=j(xj − xi)

∏
i 6=j

(X − xi) .

Alors do(P ) ≤ n− 1 et P (xj) = yj pour tout j = 1, . . . , n. Prouvons maintenant l’unicité.
Soit Q un polynôme de degré au plus n − 1 tel que Q(xj) = yj, 1 ≤ j ≤ n. Alors P et Q
sont de degré au plus n− 1 et cöıncident en n nombres réels distincts, donc sont égaux par
le corollaire 2.
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Remarque Cette méthode est en pratique une très mauvaise méthode d’interpolation.
Son intérêt est essentiellement théorique.

Polynômes premiers entre eux

Définition 6 (Polynômes premiers entre eux). Deux polynômes sont dits premiers entre
eux si leurs décomposition en facteurs irréductibles n’admet aucun facteur commun.

Exemple 1.1. Les polynômes X4 − 2X2 + 1 et X4 + 2X2 + 1 sont premiers entre eux.

Proposition 3. – Si P et Q sont deux polynômes premiers entre eux divisant le même
polynôme R, alors PQ divise R.

– Deux polynômes premiers entre eux n’ont pas de racines communes.

Théorème 5 (Bézout). Soit P et Q deux polynômes premiers entre eux. Il existe alors
des polynômes A et B tels que AP + BQ = 1. On peut de plus choisir de façon unique A
et B tels que do(A) < do(Q) et do(B) < do(P ).

Corollaire 3. Soit P et Q des polynômes premiers entre eux. Pour tout polynôme R, il
existe des polynômes U et V tels que R = UP + V Q.

1.4 Polynôme dérivée

Soit P un polynôme, P = a0 + a1X + · · · + aqX
q. On appelle polynôme dérivée de P

le polynôme, noté P ′, défini par

P ′ = a1 + 2a2X + · · ·+ qaqX
q−1 =

q∑
j=0

jajX
j−1 .

On définit les polynômes dérivés d’ordre supérieur par récurence : P (n) = (P (n−1))′.

Proposition 4. – La fonction polynôme associée au polynôme dérivé de P est la dérivée
de la fonction polynôme associée à P .

– P (n) = 0 si et seulement do(P ) ≤ n− 1.
– λ est une racine de multiplicité exactement m du polynôme P si et seulement si λ

est une racine de P (m) mais n’est pas une racine de P (m+1).

On a vu que l’on peut identifier un polynôme de degré n par ses valeurs en n+1 points.
On peut aussi identifier un polynôme de degré n par les valeurs de ses dérivées successives
en un point fixe a.

Proposition 5. Soit P un polynôme de degré au plus n. Soit a un nombre réel tel que
P (a) = 0 et P (k)(a) = 0 pour k = 1, . . . , n. Alors P = 0.
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Démonstration. Supposons que do(P ) ≤ 0. Alors P = a0 et P (a) = 0 implique a0 = 0,
d’où P = 0. Procédons maintenant par récurrence. Supposons que pour un nombre entier
n ≥ 1, on ait prouvé que tout polynôme de degré au plus n−1 dont les dérivées successives
s’annulent en un même point soit nul. Soit maintenant P un polynôme de degré au plus
n, P =

∑n
i=0 aiX

i, tel que P et toutes ses dérivées successives s’annulent en a. Puisque
P (n) est le polynôme constant n!an, si P (n)(a) = 0, on a nécessairement an = 0, et donc P
est de degré au plus n − 1. On peut donc applique l’hypothèse de récurrence à P , et l’on
obtient P = 0.

Comme précédemment, on peut écrire ce résultat sous une form équivalente. si P et Q
sont deux polynômes de degrés au plus n et a est un nombre réel tel que P (a) = Q(a) et
P (k)(a) = Q(k)(a) pour k = 1, . . . , n. Alors P = Q. On obtient alors le corollaire suivant
très important.

Corollaire 4. Soit P un polynôme et a un nombre réel. Soit P (k)(a), 1 ≤ k ≤ n les valeurs
des dérivées successives de la fonction polynômiale associée à P . Alors

P = P (a) +
n∑
k=1

P (k)(a)

k!
(X − a)k .

On utilise en général la convention P (0) = P et l’on écrit alors

P =
n∑
k=0

P (k)(a)

k!
(X − a)k .

1.5 Exercices

Exercice 1.1. Trouver tous les polynômes P de degré inférieur ou égal à 3 tels que P (0) =
1, P (1) = 2, P (2) = −1 et P (3) = −2.

Exercice 1.2. Déterminer tous les polynômes P ∈ R[X] de degré 3 tels que

P (X + 1)− P (X − 1) = X2 + 1 .

Exercice 1.3. Effectuer la division euclidienne de A par B dans les cas suivants :

1. A = X4 − 1, B = X + 2,

2. A = X4 +X3 −X2 +X + 1, B = X2 −X + 1,

3. A = X4 + 2X3 + 4X2 + 2, B = X2 +X + 1.

Exercice 1.4. Déterminer sans calculs le reste de la division euclidienne de (cos a +
X sin a)n par X2 + 1.

Exercice 1.5. Le polynôme X4 + 4 est-il irréductible dans R[X] ?

Exercice 1.6. Factoriser dans R[X] le polynôme X6 + 1.
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Exercice 1.7. Soit θ ∈ R. Factoriser dans R[X] le polynôme X4 − 2X2 cos(θ) + 1.

Exercice 1.8. Soit a 6= b. Si les restes des divisions euclidiennes d’un polynôme A par
X − a et par X − b sont α et β, respectivement, quel est le reste de la division de A par
(X − a)(X − b) ?

Exercice 1.9. Montrer que si n ≥ 2 (1−Xn)(1 +X)− 2nXn(1−X)− n2Xn(1−X)2 est
divisible par (1−X)3.

Exercice 1.10. Déterminer a et b pour que aXn+1 + bXn + 1 admette la racine double 1.
Quel est alors le quotient de aXn+1 + bXn + 1 par (X − 1)2 ?

Exercice 1.11. Soit P ∈ R[X] n’ayant pas de racine réelle. On suppose que P (x) ≥ 0
pour tout x ∈ R. Montrer qu’il existe A et B dans R[X] tels que P = A2 +B2.

2 Nombres complexes

On a vu que certains polynômes sont irréductibles dans R, ce qui est équivalent à dire
qu’ils n’admettent pas de racines réelles. De même que certains polynômes à coefficients
rationels n’ont pas de racines rationelles, mais ont des racines réelles, peut-on construire un
ensemble contenant R, auquel on pourrait étendre l’addition et la multiplication, et dans
lequel les polynômes du second degré ne seraient pas irréductibles ? Et quel serait l’intérêt
d’une telle construction ? C’est l’objet de cette section de définir les nombres complexes
et de montrer leur utilité. Il existe plusieurs constructions, à partir d’idées algébriques ou
géométriques, mais l’étude des propriétés des nombres complexes repose toujours en fin de
compte sur les propriétés fondamentales topologiques de la droite réelle. Nous choisissons
une approche algébrique, puis nous montrerons les propriétés géométriques des nombres
complexes.

Soit ∼ la relation défine sur R[X]× R[X] par

P ∼ Q⇔ X2 + 1 divise P −Q .

Cette relation est appelée relation d’équivalence, car elle a les propriétés suvantes.
– Réflexivité : ∀P ∈ R[X], P ∼ P . En effet, P − P = 0, donc X2 + 1 divise P − P .
– Symétrie. Il est clair par la définition que P ∼ Q⇔ Q ∼ P .
– Transitivité. Si P ∼ Q et Q ∼ R, alors P ∼ R. En effet, si X2 + 1 divise P − Q et
Q−R, alors X2 + 1 divise P −Q+Q−R, et P −Q+Q−R = P −R.

Cette relation est de plus compatible avec les opérations sur les polynômes.

Proposition 6. Si P ∼ P ′ et Q ∼ Q′ alors P + P ′ ∼ Q+Q′ et PP ′ ∼ QQ′.

Soit P ∈ R[X]. La classe d’équivalence de P , notée C(P ) est le sous ensemble de R[X]
constitué de tous les polynômes Q tels que P ∼ Q. En particulier, P est dans sa propre
classe d’équivalence. Si P et Q sont dans la classe d’équivalence d’un même polynôme R,
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alors par transitivité, P ∼ Q. Ceci entrâıne que deux classes d’équivalences sont disjointes
ou égales, i.e. si C(P ) ∩ C(Q) 6= ∅, alors C(P ) = C(Q). Les classes d’équivalences pour la
relation ∼ forment donc une partition de R[X].

Remarquons maintenant que l’on peut choisir un représentant particulier dans chaque
classe d’équivalence, qui est le reste de la division euclidienne par X2 + 1 d’un polynôme
quelconque de la classe.

Proposition 7. Soit C une classe d’équivalence pour la relation ∼. Il existe un unique
polynôme de degré 1 appartenant à la classe. C’est le reste de la division euclidienne par
X2 + 1 de n’importe quel élément de la classe.

Démonstration. Soit C une classe d’équivalence et P ∈ C. Soit R le reste de la division
euclidienne de P par X2 + 1. Par définition, do(R) ≤ 1 et il existe un polynôme Q tel
que P = Q(X2 + 1) + R. Soit maintenant P ′ ∈ C. Alors X2 + 1 divise P − P ′, i.e.
il existe un polynôme S, éventuellement nul, tel que P − P ′ = (X2 + 1). On a donc
P ′ = P ′ − P + P = S(X2 + 1) +Q(X2 + 1) +R, et donc R est aussi le reste de la division
euclidienne de P ′ par X2 + 1. L’unicité suit.

Il est maintenant possible de définir l’ensemble C des nombres complexes, et l’addition
et la multiplication dans C.

Définition 7. L’ensemble C est l’ensemble des classes d’équivalences pour la relation ∼.
Les éléments de C sont appelés nombres complexes. Soit z, z′ deux nombres complexes, et
soit P , P ′ des polynômes dont les classes d’équivalences sont z et z′, respectivement.

– Le nombre complexe z + z′ est la classe d’équivalence de P + P ′, qui ne dépend pas
du choix particulier de P et P ′.

– Le nombre complexe zz′ est la classe d’équivalence de PP ′, qui ne dépend pas du
choix particulier de P et P ′.

Le fait que z+z′ et zz′ ne dépendent pas du choix de P et P ′ est une conséquence de la
proposition 6. Considérons maintenant les représentants de degré 1 de z et z′, soit a+ bX
et a′ + b′X.

– Le représentant de degré 1 de z + z′ est a+ a′ + (b+ b′)X.
– le représentant de degré 1 de zz′ est aa′ − bb′ + (ab′ + a′b)X.

La première propriété est évidente. Pour vérifier la seconde, il faut effectuer la division
euclidienne de (a+ bX)(a′ + b′X) par X2 + 1. On a

(a+ bX)(a′ + b′X) = bb′(X2 + 1) + (ab′ + a′b)X + aa′ − bb′ .

Le reste de la division euclidienne de (a+ bX)(a′+ b′X) par X2 + 1 est donc (ab′+a′b)X+
aa′ − bb′, qui est donc le représentant de degré 1 de zz′.

L’ensemble C peut donc être identifié à R2 muni des opérations suivantes

(a, b) + (a′b′) = (a+ a′, b+ b′) , (a, b) · (a′b′) = (aa′ − bb′, ab′ − a′b) .
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L’ensemble R peut alors être identifié au sous-ensemble de R2 formé des couples de la
forme (a, 0), et on notera a(a′, b′) le produit (a, 0) · (a′, a′). Tout nombre complexe (a, b)
peut donc être écrit sous la forme

(a, b) = a(1, 0) + b(0, 1) .

La multiplication définie plus haut entrâıne la relation fondamentale suivante

(0, 1) · (0, 1) = −1 .

Pour parvenir à l’écriture usuelle des nombres complexes, on va introduire la notation
i = (0, 1) et comme on a déjà identifié le nombre complexe (1, 0) avec le nombre réel 1, on
peut alors écrire tout nombre complexe z sous la forme

z = a+ ib .

L’identité (0, 1) · (0, 1) = −1 prend maintenant la forme célèbre

i2 = −1 .

Les nombres complexes de la forme (a, 0) sont identifié aux nombres réels, et les nombres
de la forme (0, b) ou ib sont appelés imaginaires purs.

L’ensemble C à la même structure algébrique que R : c’est un corps. Notamment, tout
nombre complexe non nul admet un inverse pour la multiplication. Soit z = a + ib avec
ab 6= 0. Alors

(a+ ib)×
(

a

a2 + b2
− i

b

a2 + b2

)
= 1 .

Définition 8 (Partie réelle, partie imaginaire, conjugué, module). Soit z un nombre com-
plexe, z = a + ib. Le nombre réel a est appelé partie réelle de z et noté Re(z). Le nombre
réel b est appelé partie imaginaire de z, et noté Im(z). Le conjugé de z, noté z̄, est le
nombre complexe a− ib et le module de z, noté |z|, est le nombre réel positif

√
zz̄.

L’écriture d’un nombre complexe z sous la forme z = a+ib avec a, b réels est unique, et
appelée représentation cartésienne du nombre complexe z. Cette unicité signifie que deux
nombres réels z et z′ sont égaux si et seulement si leurs parties réelles et imaginaires le
sont :

z = z′ ⇐⇒ Re(z) = Re(z′) et Im(z) = Im(z′) .

En particulier,

z = 0 ⇐⇒ Re(z) = 0 et Im(z) = 0 .

On obtient aisément les identités suivantes

Re(z) =
z + z̄

2
, Im(z) =

z − z̄
2

.

On en déduit immédiatement qu’un nombre complexe est réel si et seulement si il est égal
à son conjugué, et imaginaire pur si et seulement si il est égal à l’opposé de son conjugué.

z ∈ R⇔ z = z̄ , z ∈ iR⇔ z = −z̄ .
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Exemple Soit a, a′, b, b′ des nombres réels et soit z = a + ib et z′ = a′ + ib′. Si z′ 6= 0,
déterminons les parties réelle et imaginaire de la fraction z/z′.

z

z′
=
zz̄′

z′z̄′
=
aa′ + bb′ + i(a′b− ab′)

a′2 + b′2
.

On a donc

Re(z/z′) =
aa′ + bb′

a′2 + b′2
, Im(z/z′) =

a′b− ab′

a′2 + b′2
.

Proposition 8. Soit z, z′ ∈ C.

zz′ = z̄z̄′ , zn = z̄n , |zz′| = |z||z′| , |zn| = |z|n .
Si z′ 6= 0,

(z/z′) =
z̄

z̄′
,
∣∣∣ z
z′

∣∣∣ =
|z|
|z′|

.

Polynômes à coefficients complexes

Définition 9 (Polynôme à coefficients complexes). Un polynôme à coefficients complexes
est une suite de nombres complexes ayant un nombre fini de termes non nuls. L’indice
du dernier terme non nul est appelé le degré du polynôme. La suite dont tous les termes
sont nuls est appelée polynôme nul et son degré est −∞. L’ensemble des polynômes à
coefficients complexes est noté C[X].

A un polynôme à coefficients complexes, on peut associer une fonction polynômiale
comme dans le cas des coefficients réels.

Définition 10 (Fonction polynôme). Soit P un polynôme à coefficients complexes, P =
(a0, . . . , aq). On appelle fonction polynôme associée à P la fonction définie sur R par

x→
q∑
i=0

qix
i .

Par abus de notation, on note encore P cette fonction, et sa valeur en x est notée P (x).
Une racine complexe d’un polynôme P est un nombre complexe z tel que P (z) = 0.

Par exemple, nous savons maintenant que le nombre complexe i est une racine complexe
du polynôme X2 + 1 puisque i2 = −1. Le polynôme X2 + 1 est donc factorisable dans C :
X2 + 1 = (X − i)(X + i). Ce polynôme qui est irréductible dans R ne l’est plus dans C.
C’est en fait vrai de tous les polynômes de degré 2 irréductibles dans R.

Théorème 6 (D’Alembert-Gauss). Les seuls polynômes irréductibles de C[X] sont les
polynômes de degré 1.

Corollaire 5. Tout polynôme de degré n a coefficients complexes admet n racines (non
nécessairement toutes distinctes).

Théorème 7. Les racines complexes d’un polynôme à coefficients réels sont deux à deux
conjuguées.
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Dérivée d’un polynôme à coefficients complexes

On peut dériver formellement les polynômes à coefficients complexes de la même façon
que les polynômes à coefficients réels. Si P =

∑n
i=0 aiX

i, où les coefficients ai sont com-
plexes, alors on définit à nouveau le polynôme dérivée P ′ de P par

P ′ =
n∑
i=1

iaiX
i−1 =

n−1∑
i=0

(i+ 1)ai+1X
i .

Exponentielle complexe, sinus, cosinus, π

Considérons maintenant l’ensemble S1 des nombres complexes de module 1, i.e. l’ensem-
ble des nombres complexes z tels que (Re(z))2+(Im(z))2 = 1. Cet ensemble est identifiable
à cercle unité du plan R2. Pour définir l’exponentielle complexe, nous allons donner une
définition rigoureuse du nombre réel π et de la fonction cosinus.

Définition 11 (Le nombre π). Le nombre réel π est la longueur du demi-cercle, définie
par

π =

∫ 1

−1

dx√
1− x2

= 2

∫ 1

0

dx√
1− x2

.

Nous allons maintenant définir pour x ∈ [−1, 1] la fonction arccos(x) (arc-cosinus)
comme la longueur de l’arc de cercle compris entre le point (0, 1) et le point du cercle
d’abcisse x. Cf. Figure 1.

' $
-

6

@
@I

x 0 1−1

arccos(x)

Figure 1 – Le demi-cercle unité, la fonction arc-cosinus

Définition 12 (Cosinus, sinus, exponentielle complexe).

– La fonction arc-cosinus notée arccos est la fonction continue strictement décroissante
définie sur [−1, 1] par

arccos(x) = −
∫ 1

x

dt√
1− t2

.

– La fonction cos (cosinus) est la réciproque de arccos sur [0, π]. La fonction sin (sinus)
est la fonction défine sur [0, π] par sin(θ) =

√
1− cos2(θ). On prolonge à R la fonction

cos par parité et 2π périodicité, et la fonction sin par imparité et 2π-périodicité.
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La fonction qui a θ ∈ [0, π] associe le nombre complexe du demi-cercle unité z = eix

est une bijection de [0, π] sur le demi-cercle. Son extension à R n’est pas bijective mais
conserve la propriété

∀θ ∈ R ,
∣∣eiθ∣∣ = cos2(θ) + sin2(θ) = 1 .

Elle a de plus la propriété fondamentale suivante.

Théorème 8. Pour tout θ, θ′ ∈ R, on a ei(θ+θ
′) = eiθeiθ

′
.

On dit que l’exponentielle complexe est un morphisme du groupe additif de R sur le
groupe multiplicatif de C.

Preuve du Théorème 8. Il suffit de prouver la propriété pour θ, θ′ ∈ [0, π] tels que θ+ θ′ ∈
[0, π], et pour cela il suffit de prouver que si z, z′ et zz′ sont sur le demi-cercle unité
supérieur, alors arccos(Re(zz′)) = arccos(Re(z)) + arccos(Re(z′)). Si l’on note x = Re(x)
et x = Re(x), alors il faut montrer∫ 1

x

dt√
1− t2

+

∫ 1

x′

dt√
1− t2

=

∫ 1

xx′−
√

(1−x2)(1−x′2)

dt√
1− t2

.

Fixons x′ et notons g(x) le membre de droite. Pour x = 1, on a bien l’égalité des deux
membres. Il suffit donc de montrer que l’on a égalité des dérivées par rapport à x des deux
membres. En appliquant la formule des dérivées composées, on obtient

g′(x) =
1√

1− (xx′ −
√

(1− x2)(1− x′2))2
×

{
x′ +

x
√

1− x′2√
1− x2

}
=

1√
1− x2

,

ce qui conclut la preuve.

Quelques valeurs remarquables

e0 = 1 , eiπ/2 = i , eiπ = −1 , e3iπ/2 = −i , e2iπ = 1 .

Théorème 9. La fonction exponentielle est périodique de période 2iπ : pour tout nombre
complexe z, on a

ez+2iπ = ez .

On peut étendre l’exponentielle complexe à tout C.

Définition 13. La fonction exponentielle complexe est définie sur C par

ez = eRe(z){cos(Im(z)) + i sin(Im(z))} .

L’exponentielle complexe ainsi étendue conserve la propriété de morphisme de groupes.

13



Proposition 9. Pour tout z, z′ ∈ C, on a ez+z
′
= ezez

′
.

Démonstration. Posons z = x+ iy et z′ = x+ iy′. On a alors, par définition

ez+z
′
= ex+x

′
ei(y+y

′) .

En utilisant les propriétés de l’exponentielle réelle, et le théorème 8, on obtient donc

ez+z
′
= ex+x

′
ei(y+y

′) = exex
′
eiyeiy

′
= exeiyex

′
eiy
′
= ezez

′
.

Autres propriétés Pour tout z ∈ C, on a

exp(z) = exp(z̄) , |ez| = eRe(z) , ez+iπ = −ez .

Pour tout θ ∈ R, on a

cos(θ) =
eiθ + eiθ

2
, sin(θ) =

eiθ + e−iθ

2i
.

On obtient aussi aisément les formules usuelles de trigonométrie.

cos(θ + θ′) = cos(θ) cos(θ′)− sin(θ) sin(θ′) ,

sin(θ + θ′) = cos(θ) sin(θ′) + sin(θ) cos(θ′) ,

cos(2θ) = cos2(θ)− sin2(θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ) ,

sin(2θ) = 2 cos(θ) sin(θ) .

On en déduit les formules de transformation de produits en sommes et de sommes en
produits et les premières formules de linéarisation qui seront généralisées ultérieurement.

cos(θ) cos(θ′) =
1

2
cos(θ + θ′) +

1

2
cos(θ − θ′) ,

sin(θ) sin(θ′) =
1

2
cos(θ + θ′)− 1

2
cos(θ − θ′) ,

sin(θ) cos(θ′) =
1

2
sin(θ + θ′) +

1

2
sin(θ − θ′) ,

cos(θ) + cos(θ′) = 2 cos

(
θ + θ′

2

)
cos

(
θ − θ′

2

)
,

cos(θ)− cos(θ′) = 2 cos

(
θ + θ′

2

)
sin

(
θ − θ′

2

)
,

sin(θ) + sin(θ′) = 2 sin

(
θ + θ′

2

)
cos

(
θ − θ′

2

)
,

cos2(θ) =
1 + cos(2θ)

2
, sin2(θ) =

1− cos(2θ)

2
.
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Interprétation géométrique des nombres complexes

Tout point du plan R2 peut être représenté par un nombre complexe z appelé l’affixe.
Si z 6= 0, alors z/|z| est dans le cercle unité, et donc il existe un unique θ ∈ [0, π] tel que
z = |z|eiθ. Le nombre θ est alors appelé l’argument de z, noté arg(z). Si z′ est un nombre
complexe tel que z′ = r′eiθ

′
, alors zz′ = rr′eθ+θ

′
, i.e. |zz′| = rr′ et arg(z + z′) = θ + θ′

(modulo 2π).
La multiplication par un nombre complexe non nul z peut donc être vue comme une

transformation géométrique. Soit r = |z| et θ = arg(z). Soit A un point du plan d’affixe z′.
Alors zz′ est l’affixe du point obtenu par rotation d’angle θ, et homothétie de rapport r.
Une telle application, composéé d’une rotation et d’une homothétie est appelée similitude.
Cf. Figure 2.

-

6
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�
��
�*
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�
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�
��

zz′

z′

z

Figure 2 – La multiplication par z

Grâce à cette interprétation, on voit aisément comment trouver une racine carrée de
tout nombre complexe. Soit z ∈ C, z 6= 0. Soit r son module et θ son arguemnt, i.e. z = reiθ.
Les racines carrées de z sont donc les nombres complexes z1 et z2 définis par

z1 =
√
reiθ/2 , z2 = −

√
reiθ/2 =

√
rei(θ/2+π) .

Remarquons que si z ∈ R+ alors les reux racines carrées de z sont réelles, et par
convention on dénote

√
z la racine positive. Si z ∈ R∗−, alors les reux racines carrées de z

sont imaginaires pures.

Résolution des équations du second degré à coefficients complexes

Nous pouvons maintenant résoudre les équations du second degré à coefficients com-
plexes. Soit a, b, c trois nombres complexes, a 6= 0. Montrons que l’équation

aX2 + bX + c = 0

admet toujours deux racines (éventuellement confondues) dans C. On utilise la même
décomposition que dans le cas réel.

aX2 + bX + c = a

{(
X +

b

2a

)2

− b2 − 4ac

4a2

}
.
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La discussion quant au signe de b2− 4ac n’a plus de raison d’être. Soit z1 une racine carrée
(complexes) de (b2 − 4ac)/4a2. On a alors

aX2 + bX + c = a

(
X +

b

2a
− z1

)(
X +

b

2a
+ z1

)
.

Les racines complexes de l’équation aX2+bX+c = 0 sont donc −b/(2a)+z1 et −b/(2a)+z1,
ce que l’on peut écrire symboliquement

x1 =
−b+

√
b2 − 4ac

2a
, x1 =

−b−
√
b2 − 4ac

2a
.

Remarquons que si les coefficients a, b, et c sont réels, alors les racines sont réelles si
b2 − 4ac ≥ 0, ou complexes et conjuguées si b2 − 4ac < 0.

Racines n-ièmes de l’unité

L’équation Xn = 1 admet une ou deux racines réelles, selon la parité de n. Dans C, elle
admet exactement n racines.

Proposition 10. Les racines n-ièmes de l’unité sont les racines de l’équation Xn = 1,
définies par

zk = e
2ikπ
n , 0 ≤ k ≤ n− 1 .

Les racines n-ièmes autres que 1 sont les racines de l’équation

Xn−1 + · · ·+X + 1 = 0 .

La dernière propriété résulte de la factorisation Xn− 1 = (X − 1)(Xn−1 + · · ·+X + 1).
Toute racine n-ième de l’unité z différente de 1 vérifie donc la relation zn + · · ·+ z+ 1 = 0.

Les racines n-ièmes de l’unité peuvent être représentées graphiquement sur le cercle
unité. Cf. Figure 3 où sont représentées les racines cubiques de l’unité, 1, j = e2iπ/3 et
j2 = e4iπ/3 = j̄. Du fait de la factorisation X3 − 1 = (X − 1)(X2 + X + 1), on remarque
que j et j2 sont les racines de l’équation à coefficients réels X2 + X + 1 = 0, et sont donc
complexes conjuguées.

&%
'$

-

6

•1
•j

•
j2

Figure 3 – Les racines cubiques de l’unité

De même, pour tout réel z 6= 0, l’équationXn = z admet n racines distinctes, z0, . . . , zn−1,
appelées racines n-ième de z. Si z = reiθ, avec r > 0 et θ ∈ [0, 2π[, on a

zk = r1/neikθ/n , 0 ≤ k ≤ n− 1 .
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Utilisation des nombres complexes pour le calcul des sommes
trigonométriques

Soit z un nombre complexe différent de 1. On a l’identité

zn−1 + · · ·+ z + 1 =
zn − 1

z − 1
.

Posons r = |z| et soit θ ∈ [0, 2π[ tel que z = reiθ. On a donc

n−1∑
i=0

zk =
n−1∑
i=0

rkeikθ =
rneinθ − 1

reiθ − 1
.

Déterminons les parties réelles et imaginaires du membre de droite.

rneinθ − 1

reiθ − 1
=

(rneinθ − 1)(re−iθ − 1)

(reiθ − 1)(re−iθ − 1)

=
rn+1 cos((n− 1)θ)− rn cos(nθ)− r cos(θ) + 1

r2 − 2r cos(θ) + 1

+ i
rn+1 sin((n− 1)θ)− rn sin(nθ)− r sin(θ)

r2 − 2r cos(θ) + 1
.

En identifiant parties réelles et imaginaires, on obtient les identités

n−1∑
i=0

rk cos(kθ) =
rn+1 cos((n− 1)θ)− rn cos(nθ)− r cos(θ) + 1

r2 − 2r cos(θ) + 1
,

n−1∑
i=0

rk sin(kθ) =
rn+1 sin((n− 1)θ)− rn sin(nθ)− r sin(θ)

r2 − 2r cos(θ) + 1
.

Si r = 1, on obtient

n−1∑
i=0

eikθ =
einθ − 1

eiθ − 1
= ei(n−1)θ/2

sin(nθ/2)

sin(θ/2)
.

En identifiant parties réelles et imaginaires, on obtient

n−1∑
i=0

cos(kθ) =
cos((n− 1)θ/2) sin(nθ/2)

sin(θ/2)
,

n−1∑
i=0

sin(kθ) =
sin((n− 1)θ/2) sin(θ/2)

sin(θ/2)
.
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Linéarisation

L’exponentielle complexe permet de transformer des puissances des fonctions trigonométriques
en sommes. Ce procédé sera utile pour les calculs d’intégrales. Rappelons la formule du
binôme, valable pour a, b nombres complexes quelconques :

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k ,

avec
(
n
k

)
= n!

k!(n−k)! . Appliquons cette formule pour calculer cosn(θ).

cosn(θ) =

(
eiθ + e−iθ

2

)n
= 2−n

n∑
k=0

(
n

k

)
eikθe−i(n−k)θ = 2−n

n∑
k=0

(
n

k

)
ei(2k−n)θ

= 2−n
n∑
k=0

(
n

k

)
cos((2k − n)θ) + i2−n

n∑
k=0

(
n

k

)
sin((2k − n)θ) .

Le membre de gauche de cette équation est réel, donc le membre de droite doit l’être aussi.
On en déduit donc les deux identités, valables pour tout θ ∈ R :

cosn(θ) = 2−n
n∑
k=0

(
n

k

)
cos((2k − n)θ) ,

2−n
n∑
k=0

(
n

k

)
sin((2k − n)θ) = 0 .

De la même façon, on obtient, en remarquant que 1/i = −i = −eiπ/2,

sinn(θ) =

(
eiθ − e−iθ

2i

)n
= 2−n

n∑
k=0

(
n

k

)
(−1)keinπ/2ei(2k−n)θ

= 2−n
n∑
k=0

(
n

k

)
(−1)k cos(nπ/2 + (2k − n)θ) + i2−n

n∑
k=0

(
n

k

)
(−1)k sin(nπ/2 + (2k − n)θ) .

Par identification des parties réelle et imaginaire (nulle), on obtient les formules

sinn(θ) = 2−n
n∑
k=0

(
n

k

)
(−1)k cos(nπ/2 + (2k − n)θ) ,

2−n
n∑
k=0

(
n

k

)
(−1)k sin(nπ/2 + (2k − n)θ) = 0 .
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On peut simplifier les formules précédentes en distinguant selon la parité de n.

cos2q(θ) = 2−2q

{
1 + 2

q−1∑
k=0

(
2q

k

)
cos((2q − 2k)θ)

}
,

cos2q+1(θ) = 2−2q
q∑

k=0

(
2q

k

)
cos((2q + 1− 2k)θ) ,

sin2q(θ) = 2−2q(−1)q

{
1 + 2

q−1∑
k=0

(
2q

k

)
(−1)k cos((2q − 2k)θ)

}
,

sin2q+1(θ) = 2−2q(−1)q+1

q∑
k=0

(
2q + 1

k

)
(−1)k sin((2q + 1− 2k)θ) .

Inversement, on obtient des formules pour exprimer cos(nθ) et sin(θ) comme polynômes
trigonométriques.

cos(nθ) = Re
(
einθ
)

= Re ((cos(θ) + i sin(θ))n) =
n∑
k=0

(
n

k

)
Re(in−k) cosk(x) sinn−k(x) ,

sin(nθ) = Im
(
einθ
)

= Im ((cos(θ) + i sin(θ))n) =
n∑
k=0

(
n

k

)
Im(in−k) cosk(x) sinn−k(x) .

En utilisant la relation cos2(θ) + sin2(θ) = 1, on peut réécrire les formules ci-dessus en ne
faisant intervenir qu’une seule fonction trigonométrique.

Exemples

Linéarisons cos4(θ) et sin4(θ). En appliquant les formules, on obtient

cos4(θ) = 2−4{1 + 8 cos(2θ) + 2 cos(4θ)} =
1

16
+

1

2
cos(2θ) +

1

8
cos(4θ) ,

sin4(θ) = 2−4{1− 8 cos(2θ) + 2 cos(4θ)} =
1

16
− 1

2
cos(2θ) +

1

8
cos(4θ) .

Remarquons à titre de vérification que pour θ = 0, le membre de droite de la dernière
formule est bien nul. Exprimons mainteant sin5(θ) comme un polynôme trigonométrique en
sinus. On va appliquer la formule générale obtenue plus haut, en remarquant que Im(ik) = 0
si k est pair et Im(ik) = (−1)q si k = 2q + 1, puis remplacer tous les cosinus par des sinus.

sin(5θ) = sin5(θ)− 10 cos2(θ) sin3(θ) + 5 cos4(θ) sin(θ)

= sin5(θ)− 10{1− sin2(θ)} sin3(θ) + 5{1− sin2(θ)}2 sin(θ)

= 16 sin5(θ)− 20 sin3(θ) + 5 sin(θ) .

On remarquera dans les formules précédentes les parités des termes.
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2.1 Exercices

Exercice 2.1. Quels sont les nombres complexes dont le carré est égal au conjugué ?

Exercice 2.2. Montrer que

(z + z′ ∈ R et zz′ ∈ R)⇐⇒ (z et z′ sont réels ou z′ = z̄).

Exercice 2.3. Déterminer et représenter l’ensemble des points M du plan dont l’affixe z
vérifie l’égalité z + z̄ + zz̄ = 0.

Exercice 2.4. x, y et z étant trois nombres complexes de module égal à 1, comparer les
modules des nombres complexes x+ y + z et xy + yz + zx.

Exercice 2.5. Mettre sous la forme a+ ib (a, b ∈ R) les complexes

1− 3i

3− i
,

(
2− 3i

1 + 7i

)2

,
i + 5

(i + 3)2
.

Exercice 2.6. Montrer que (1 + 2i)(2− 3i)(2 + i)(3− 2i) est réel sans en calculer la valeur.

Exercice 2.7. Calculer les racines carrées des nombres complexes 1 + i
√

3, 8 − 6i et
8i− 6.

Exercice 2.8. Résoudre dans C l’équation z2 − (2 + 6i)z + 2i− 5 = 0.

Exercice 2.9. Calculer les racines carrées dans C des nombres suivants : 100, −100, 3+4i,
−5− 12i.

Exercice 2.10. Donner en fonction de θ l’argument des nombres complexes suivants :

z1 = cos θ − i sin θ,

z2 = − sin θ + i cos θ,

z3 = sin θ + i cos θ,

z4 = − sin θ − i cos θ,

z5 = − cos θ + i sin θ.

Exercice 2.11. Soit a, b et c les trois nombres complexes définis par

a =

√
2

2
− i

√
2

2
, b =

1

2
+ i

√
3

2
, c = ab .

Donner un argument de c.

Exercice 2.12. Déterminer les racines cubiques de −
√

3 + i et représenter leurs images
dans le plan complexe.

Exercice 2.13. Calculer (1− 2i)4, puis résoudre dans C l’équation z4 = −7 + 24i.
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Exercice 2.14. Calculer les racines cubiques de z = (1− i)/
√

2.

Exercice 2.15. Trouver tous les couples (x, y) réels tels que (1 + i)/(1− i) = xeiy.

Exercice 2.16. Donner sous forme cartésienne les racines de l’équation

(3 + 7i)z2 − 8(1 + 2i)z + 4(1 + i) = 0 .

En déduire les solutions de l’équation

(3− 7i)z2 − 8(1− 2i)z + 4(1− xi) = 0 .

Exercice 2.17. Soient A, B et C les points du plan complexe d’affixes respectifs a, b et
c. Montrer que le triangle ABC est équilatéral si et seulement si on a a + bj + cj2 = 0
ou a + bj2 + cj = 0 où j est la racine cubique de l’unité de partie imaginaire strictement
positive, i.e. j = e2iπ/3.

Exercice 2.18. Factoriser dans C[X] le polynôme X5 + 8X4 + 26X3 + 44X2 + 40X + 16
après avoir vérifié qu’il admet −2 pour racine.

Exercice 2.19. Factoriser dans C[X] puis dans R[X] le polynôme X4− 2X2 cos(φ) + 1 où
φ est un réel donné.

Exercice 2.20.

(i) Calculer le module et l’argument de z1 = (
√

6− i
√

2)/2 et z2 = 1− i.

(ii) En déduire le module et l’argument de z = z1/z2.

(iii) Utiliser les résultats précédents pour calculer cos(π/12) et sin(π/12).

Exercice 2.21. Déterminer le module et l’argument de z = (1+i)/(1−i), puis calculer z32.

Exercice 2.22. Déterminer les complexes z vérifiant z3 = i/z̄.

Exercice 2.23. Résoudre dans C l’équation zn = z̄ où n ∈ N∗.

Exercice 2.24. Linéariser cos(x) cos2(5x) et sin2(x) cos(4x).

Exercice 2.25. Résoudre dans C l’équation 4z2 + 8|z|2 − 3 = 0.

Exercice 2.26. Déterminer le module et l’argument des nombres complexes

y1 = 1 + cosx+ i sinx et y2 = 1− cosx− i sinx, x ∈ R.

Utiliser ces résultats pour simplifier la fraction y1/y2.

Exercice 2.27. Résoudre dans R les équations

(i) sin(2x) = cos(4x+ π/2) ;

(ii) cos x+
√

3 sinx =
√

2.
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Exercice 2.28. Déterminer les réels t tels que toutes les racines de l’équation

z2 − 2zeit + 1 = 0

soient imaginaires pures.

Exercice 2.29. Soit a un nombre réel. Résoudre dans R l’équation(
1 + ix

1− ix

)3

=
1 + ia

1− ia
.

Indication : on posera a = tan(α/2) avec α ∈]−π, π[ et on donnera les solutions en fonction
de α.

Exercice 2.30. Soit a, b ∈ R. Calculer
∑n

k=0

(
n
k

)
ei(a+bk). En déduire

∑n
k=0

(
n
k

)
cos(a+ bk).

Exercice 2.31. Calculer

n∑
k=0

(
n

k

)
cos(kx) + i

n∑
k=0

(
n

k

)
sin(kx) .

En déduire les solutions dans R de l’équation

n∑
k=0

(
n

k

)
cos(kx) =

n∑
k=0

(
n

k

)
sin(kx) .

Exercice 2.32. Soit q un entier fixé, q ≥ 2. Soit z une racine q-ième de l’unité, z 6= 1.
pour n ≥ 1, on définit Sn =

∑n
k=0 z

k. Montrer que la suite Sn ne prend qu’un nombre fini
de valeurs distinctes. En déduire en fonction de n la valeur de

∑n
k=1 sin(2kπ/3).

Exercice 2.33. Soit n ≥ 2, on considère les nombres complexes (racines nièmes de l’unité)
zk = e2ikπ/n, k = 0, 1, . . . , n − 1. Calculer en fonction de n la somme Pn définie par
Pn =

∑n−1
k=0 |zk+1 − zk|. Déterminer limn→∞ Pn. Interpréter géométriquement ce résultat.

Exercice 2.34. Soit P le polynôme défini par :

P = X4 + (−4 + 2i)X3 + (12− 8i)X2 + (4 + 26i)X − 13 .

(i) Montrer que −i est une racine du polynôme P . Préciser son ordre de multiplicité.

(ii) Montrer que P admet une racine réelle. Préciser son ordre de multiplicité.

(iii) Factoriser le polynôme P en produit de polynômes irréductibles dans C.

(iv) Soit Q et R le quotient et le reste de la division euclidienne de P par (X + i)2.

(a) En utilisant les questions précédentes déterminer les polynômes Q et R.

(b) En déduire la factorisation dans C puis dans R du polynôme Q.

Exercice 2.35. Calculer
∑2n−1

k=0 cos2p(x+ kπ/n).
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3 Suites

Définition 14 (Suite réelle ou complexe). Une suite réelle est une application de N dans
R. Une suite complexe est une application de N dans C. L’image d’un entier n par une
suite u à valeurs réelles ou complexes est généralement notée un et appelée n-ième terme
de la suite.

Définition 15 (Suite majorée, minorée, bornée). Une suite réelle u est dite majorée si il
existe un réel A tel que un ≤ A pour tout n ≥ 0 ; elle est dite minorée si il existe un réel
A tel que un ≥ A pour tout n ≥ 0 ; elle est dite bornée si elle est majorée et minorée. Une
suite complexe u est dite bornée si la suite réelle des modules |un|, n ≥ 0 est majorée.

Définition 16 (Borne supérieure, borne inférieure). Soit A une partie de R. Si A est
majorée, alors elle admet une borne supérieure. Si A est minorée, alors elle admet une
borne inférieure.

Définition 17 (Suite monotone). Une suite réelle u est dite croissante à partir du rang
n0 si pour tout n ≥ n0, un ≤ un+1 ; elle est dite décroissante à partir du rang n0 si pour
tout n ≥ n0, un ≥ un+1. Elle est dite monotone à partir du rang n0 si elle est croissante ou
bien décroissante à partir du rang n0.

Définition 18 (Suite convergente). Une suite à valeurs réelles ou complexes u est dite
convergente si il existe un nombre réel ou complexe ` tel que

∀ε > 0 , ∃n0 ∈ N , ∀n ≥ n0 , |un − `| ≤ ε .

On dit alors que la suite u converge, ou tend, vers `, et on écrit limn→∞ un = `.

Remarque La limite d’une suite réelle convergente est un nombre réel. Si une suite
complexe converge, sa partie réelle et sa partie imaginaire forment des suites convergentes,
et la limite de la partie réelle (resp. imaginaire) est la partie réelle (resp. imaginaire) de la
limite.

Théorème 10. Soit u une suite convergente. Alors u admet une unique limite.

Théorème 11. Une suite convergente est bornée.

Théorème 12. Soit u et v deux suites convergentes, ` et m leurs limites.
– La suite u+ v est convergente et sa limite est `+m.
– La suite uv est convergente et sa limite est `m.
– Si m 6= 0, la suite u/v est convergente et sa limite est `/m.

Théorème 13. Soit u une suite convergente ayant pour limite zéro et v une suite bornée.
Alors la suite uv est convergente et a pour limite zéro.
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Définition 19 (Suite divergente). On dit qu’une suite réelle u tend vers +∞ si

∀A ∈ R , ∃n0 ∈ N , ∀n ≥ n0 , un ≥ A .

On dit qu’une suite réelle u tend vers −∞ si −u tend vers +∞, soit

∀A ∈ R , ∃n0 ∈ N , ∀n ≥ n0 , un ≤ A .

Une suite est dite divergente si elle tend vers +∞ ou bien vers −∞.

Définition 20 (Suites géométriques). Une suite u à valeurs complexes est dite géométrique
si il existe un nombre complexe w tel que pour tout n ≥ 0, un+1 = wun.

Somme d’une suite géométrique Soit u une suite géométrique de premier terme u0
et de raison w ∈ C. Alors

n∑
j=q

uj = uq
1− wn−q+1

1− w
.

Soit S la suite définie par Sn =
∑n

j=0 uj. Alors si |w| < 1, la suite S est convergente et sa
limite est donnée par

lim
n→∞

Sn =
u0

1− w
.

Si |w| ≥ 1 la suite S est divergente. Si la raison w est de la forme w = e2ipπ/q, où p et q
sont des entiers premiers entre eux et p < q, alors la suite S est périodique de période q.
En effet, wq = 1, et donc 1+w+ · · ·+wq−1 = 0. La suite S prend donc q valeurs disctintes.

Exemple 3.1. Calculer en fonction de n la valeur de
∑n

k=0 e2ikπ/3. Posons w = e2ikπ/3.

Critères de convergence

Théorème 14. Une suite réelle croissante (au delà d’un certain rang n0) et majorée est
convergente. Une suite réelle décroissante (au delà d’un certain rang n0) et minorée est
convergente.

Ce théorème est une propriété fondamentale de l’ensemble R des nombres réels, et ne
peut pas être démontré sans avoir construit rigoureusement R à partir de l’ensemble des
nombres rationnels.

Remarque Si la suite u est croissante (au delà d’un certain rang n0) et majorée par le
réel A, alors

lim
n→∞

un = sup
n≥n0

un ≤ A .
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De même, si la suite u est décroissante (au delà d’un certain rang n0) et minorée par le
réel A, alors

lim
n→∞

un = inf
n≥n0

un ≥ A .

Corollaire 6. Si une suite est croissante mais non majorée, alors elle tend vers +∞. Si
une suite est décroissante et non minorée, alors elle tend vers −∞.

Exemple 3.2 (Série harmonique). On appelle série harmonique la suite u de terme général
un = 1 + 1/2 + · · ·+ 1/n, n ≥ 1 est croissante mais non majorée donc divergente. En effet,
pour tout n ≥ 1, on a

u2n − un =
2n∑

j=n+1

1

j
≥

2n∑
j=n+1

1

2n
=

1

2

Pour tout entier k ≥ 1, on obtient donc

u2k = u1 +
k∑
j=1

(u2j − u2j−1) ≥ 2k + 1 .

La suite u n’est donc pas bornée. Puisqu’elle est croissante, elle tend donc vers +∞.

Définition 21 (Suites adjacentes). Deux suites réelles u et v sont dites adjacentes si u est
croissante, v est décroissante, si la suite v − u est positive et tend vers 0.

Théorème 15. Deux suites adjacentes sont convergentes et ont la même limite.

Démonstration. Par hypothèse, la suite u est croissante et majorée, et la suite v est
décroissante et minorée, donc les deux suites convergent. Soit `1 et `2 leurs limites re-
spectives. Soit ε > 0. Par définition de la convergence, et puisque l’on a aussi supposé que
u− v tend vers 0, il existe un entier n0 tel que pour tout n ≥ n0, on ait

|un − `1| ≤ ε/3 , |vn − `2| ≤ ε/3 , |un − vn| ≤ ε/3 .

Par l’inégalité triangulaire, on obtient donc

|`1 − `2| ≤ |`1 − un|+ |un − vn|+ |vn − `2| ≤ ε .

On a donc obtenu que pour tout ε > 0, |`1 − `2| ≤ ε. Ceci n’est possible que si `1 = `2. On
conclut donc que les deux suites ont la même limite.

Exemple 3.3. Soit u la suite réelle définie par

un =
n∑
j=0

(−1)j

2j + 1
.

La suite u est convergente et sa limite est appelée π/4.
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L’exemple précédent rentre dans le cadre plus général des séries alternées.

Théorème 16. Soit u une suite décroissante convergent vers zéro. La suite v définie par
vn =

∑n
k=0(−1)kuk est convergente.

Démonstration. Les suites s et t définie par sn = v2n et tn = v2n+1 sont adjacentes.

Définition 22 (Suite de Cauchy). Une suite à valeurs réelles ou complexes u est appelée
suite de Cauchy si

∀ε > 0 , ∃n0 , ∀n,m ≥ n0 , |un − um| ≤ ε .

Théorème 17. Une suite convergente est de Cauchy.

Théorème 18. Une suite de Cauchy est convergente.

Démonstration. Soit v et w les suites définies par

vn = inf
k≥n

uk , wn = sup
k≥n

uk .

La suite v est croissante et la suite w est décroissante, et pour tout n, on a vn ≤ wn. la
suite v est donc majorée et la suite w est minorée. Montrons que les suites un et wn sont
adjacentes, c’est-à-dire que la suite v−w tend vers zéro. Soit ε > 0, et soit N tel que pour
tout n,m ≥ N , |un − um| ≤ ε. Fixons m ≥ N . On a donc

∀n ≥ N , um − ε ≤ un ≤ um + ε

ce qui entrâıne que

∀n ≥ N , um − ε ≤ inf
k≥n

uk ≤ um + ε .

Ces inégalités étant valables pour tout m ≥ N , on a donc aussi

∀n ≥ N , sup
m≥n

um − ε ≤ inf
k≥n

uk ≤ sup
m≥n

um + ε ,

soit

∀n ≥ N , wn − ε ≤ vn ≤ wn + ε ,

c’est-à-dire, finalement

∀n ≥ N , |wn − vn| ≤ ε ,

ce qui signifie précisément que la suite w − v converge vers 0. Les deux suites v et w sont
donc convergentes et ont la même limite, notée `. Montrons que la suite u converge vers
`. Soit ε > 0 et soit N tel que pour tout n ≥ N , on ait simultanément |vn − `| ≤ ε et
|wn − `| ≤ ε. Puisque par définition vn ≤ un ≤ wn pour tout n, on a donc

∀n ≥ N , `− ε ≤ vn ≤ un ≤ wn ≤ `+ ε

et donc |un − `| ≤ ε pour tout n ≥ N , ce qui montre que la suite u est convergente, avec `
pour limite.
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Corollaire 7. Une suite de Cauchy est bornée.

Exemple 3.4. Soit u la suite définie par un = 1+ 1
22

+ 1
32
· · ·+ 1

n2 . La suite u est de Cauchy.
En effet, on a, pour m > n > 0,

um − un =
m∑

k=n+1

1

k2
≤

m∑
k=n+1

1

(k − 1)k
=

1

n
− 1

m
≤ 1

n
.

Cette inégalité est vraie pour tout m > n, et puis que 1/(nn!) → 0, pour tout ε, il existe
un N tel que pour tout m,n ≥ N , |um − un| ≤ ε. La suite u est donc de Cauchy, et donc
converge.

Exemple 3.5. Soit u la suite définie par un = 1 + 1
2

+ 1
3!
· · ·+ 1

n!
. La suite u est de Cauchy

et sa limite est notée e, le nombre tel que log(e) = 1. En effet, on a, pour m > n > 0,

um − un =
m∑

k=n+1

1

k!
=

1

n!

m∑
k=n+1

1

(n+ 1)× · · · × k

≤ 1

n!

m∑
k=n+1

1

(k − 1)k
=

1

n!

{
1

n
− 1

m

}
≤ 1

n× n!
.

Cette inégalité est vraie pour tout m > n, et puisque 1/(n× n!)→ 0, on obtient que pour
tout ε, il existe un N tel que pour tout m,n ≥ N , |um − un| ≤ ε. La suite u est donc
de Cauchy, et donc converge. La même majoration permet de montrer que sa limite e est
irrationnelle. Cf. Exercice 3.11.

Notations de Landau

Définition 23. Soit u et v deux suites réelles ou complexes. On dit que un = O(vn) (u est
grand O de v) si

∃K ≥ 0 , ∃n0 ∈ N , ∀n ≥ n0 , |un| ≤ K|vn| .

On dit que un = o(vn) (u est petit o de v) si

∀ε > 0 , ∃n0 ∈ N , ∀n ≥ n0 , |un| ≤ ε|vn| .

On dit que la suite u est équivalent à la suite v à l’infini et l’on note un ∼ vn si un − vn =
o(un) et un − vn = o(vn).

Remarque Ces définitions permettent de considérer des suites dont les termes peuvent
s’annuler. Si les termes de la suite v sont non nuls, alors on a les équivalences

un = O(vn) ⇐⇒ la suite u/v est bornée ,

un = o(vn) ⇐⇒ lim
n→∞

un
vn

= 0 ,

un ∼ vn ⇐⇒ lim
n→∞

un
vn

= 1 .
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Dire qu’une suite est O(1) est équivalent à dire qu’elle est bornée ; dire qu’une suite est
o(1) est équivalent à dire qu’elle est converge vers 0.

Les exemples fondamentaux

– Si 0 < γ < δ, alors nγ = o(nδ) et n−δ = o(nδ).
– Pour tout γ, δ > 0, (log n)γ = o(nδ) et n−δ = o((log n)−γ).
– Pour tout γ, δ > 0, nγ = o(eδn) et e−δn = o(n−γ).

Proposition 11. • Les relations o, O et ∼ sont transitives :
– si un = o(vn) et vn = o(wn) alors un = o(wn) ;
– si un = O(vn) et vn = O(wn) alors un = O(wn) ;
– si un ∼ vn et vn ∼ wn alors un ∼ wn.

• Si est bornée et vn = O(un), alors v est bornée.

• Si u est bornée et vn = o(un), alors limn→∞ vn = 0.

• Si u est bornée et un = o(vn), alors limn→∞ |vn| =∞.

• Si u et v sont des suites positives et un = o(vn) alors 1/vn = o(1/un).

Suites récurrentes

On appelle suite récurrente une suite u telle que un soit fonction d’une ou plusieurs
valeurs précédentes. Plus précisemment, un suite u est dite récurrente d’ordre k s’il existe
une fonction f : Rk → R telle que pour tout n ≥ 0, un+k = f(un+k−1, . . . , un). Une telle
suite est entièrement déterminée par la fonction f et les k premières valeurs u0, . . . , uk−1.

Proposition 12. Si f est continue et si la suite réelle u est convergente, alors sa limite `
est solution de l’équation f(`) = `. Si f(u0) = u0, alors la suite est constante.

Exemple 3.6. Soit f la fonction définie sur [0,∞) par f(x) =
√

(x2 + 7x)/2 − 1 et soit
u la suite récurrente définie par u0 ≥ 1 et un = f(un). Les limites possibles de la suite u
vérifient l’équation f(x) = x, soit

√
(x2 + 7x)/2 − 1 = x, i.e. x2 − 3x + 2 = 0. Les seules

limites possibles sont 1 et 2. Remarquons de plus que l’on a f(x) > x si et seulement si
x2 − 3x+ 2 < 0, i.e. x ∈]1, 2[. On a donc les cas suivants.

– Si u0 = 1 ou u0 = 2, la suite u est constante.
– Si x > 2, alors 2 < f(x) < 2 et donc si u0 > 2, on a 2 < f(un) < un pour tout n, et

donc la suite est décroissante et minorée, donc convergente, et sa limite est donc 2.
– Si 1 < x < 2, on a 1 < x < f(x) < 2, et donc si u0 ∈]1, 2[, alors pour tout n on a

1 < un < un+1 < 2. La suite un est croissante et majorée, donc convergente, et sa
limite est donc 2.

Remarquons enfin que si 0 < x < 1, alors f(x) < x, et donc si u0 ∈]0, 1[, la suite u est
décroissante. Mais il existe un n tel que u2n + 7un < 0, et donc la suite u n’est pas définie
pour tout n.
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Comme dans l’exemple précédent, l’étude des suites récurrentes générales repose sur
des propriétés de monotonie.

Théorème 19. Soit f une fonction continue sur un intervalle I (non réduit à un point) et
admettant un unique point fixe x∗ dans I. Soit u la suite définie par la donnée de u0 ∈ I et
un+1 = f(un) et soit g la fonction définie sur I par g(x) = f(x)− x. Si g est décroissante
sur [x∗,∞[∩I et croissante sur ]−∞, x∗] ∩ I, alors la suite u converge vers x∗.

Si f est de plus dérivable, on peut obtenir une vitesse de convergence.

Théorème 20. Soit f une fonction continument dérivable sur un intervalle I (non réduit
à un point), admettant le point fixe x∗ dans I et telle que |f ′(x)| < 1 sur I. Soit u la suite
définie par la donnée de u0 ∈ I et un+1 = f(un). Alors la suite u converge vers x∗ et il
existe une constante positive C et un nombre réel r ∈ [0, 1[ tel que |un − x| ≤ Crn.

Exemple 3.7. Considérons la fonction f(x) = log(x+3) et la suite u définie par la donnée
de u0 et un+1 = f(un). La fonction f est définie sur ] − 3,∞[ et admet un unique point
fixe x∗ (x∗ ≈ 1.5052415). Le graphe de la fonction f est donné Figure 4. Le point fixe x∗

correspond à l’intersection du graphe de f et de la droite y = x. Les premières valeurs de la
suite u pour u0 = 5 et u0 = 0 sont données Table 1. La dérivée de f est f ′(x) = 1/(x+ 3).
On a donc f ′(x) < 1 si et seulement si x > −2. La suite est donc convergente pour tout
choix de u0 > −2 et sa limite est x∗. On voit que la convergence est très rapide. Comme
la fonction f est de plus concave (c’est-à-dire que sa dérivée est décroissante), on obtient
que si u0 ≥ x∗, on a 0 ≤ un − x ≤ (u0 − x∗)(x∗ + 3)−n pour tout n ≥ 0.

5 2.0794415 1.6252013 1.5315199 1.5110574 1.5065316 1.5055278 1.505305
1.5052556 1.5052446 1.5052422 1.5052417 1.5052415 1.5052415 1.5052415

0 1.0986123 1.4106485 1.4840217 1.5005203 1.504193 1.5050087 1.5051898
1.50523 1.505239 1.5052409 1.5052414 1.5052415 1.5052415 1.5052415

Table 1 – Les quinze premières valeurs de la suite u pour u0 = 5 et u0 = 0.

Equations de récurrence linéaire

On considère des équations de récurrence linéaire du type

un+q = a1un+q−1 + · · · aqun
où a1, . . . , aq sont des nombres complexes non tous nuls. L’étude des solutions de ce type
de suite passe par l’étude des solutions du polynôme P appelé polynôme caractéristique
de l’équation, défini par

P = Xq −
q∑
i=1

aiX
q−i .

Considérons tout d’abord le cas le plus simple où P admet q racines distinctes, réelles ou
complexes.
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Figure 4 – Le graphe et le point fixe de la fonction f(x) = log(x+ 3).

Proposition 13. Si le polynôme caractéristique de l’équation admet q racines distinctes
λ1, . . . , λq, réelles ou complexes, alors les solutions de l’équation de récurrence un+q =
a1un+q−1 + · · · aqun sont de la forme

un =

q∑
i=1

αiλ
n
i

où les constantes α1, . . . , αq sont déterminées par les conditions initiales u0, . . . , uq−1 (ou
par n’importe quel q-uplet de valeurs successives de la suite uk, . . . , uk+q−1).

Exemple 3.8. Soit u la suite définie par l’équation de récurrence un = un−1 + un−2 (suite
de Fibonacci). Le polynôme caractéristique est P = X2 − X − 1, dont les racines sont
(1 +

√
5)/2 et (1 −

√
5)/2. La racine positive (1 +

√
5)/2 est appelée nombre d’or. Les

solutions sont donc de la forme un = a((1 +
√

5)/2)n + b((1 −
√

5)/2)n. Soit u0 et u1 les
deux premières valeurs (arbitraires). On doit avoir

u0 = a+ b , u1 = a(1 +
√

5)/2 + b(1−
√

5)/2

soit

a = −u0(1−
√

5)/2− u1√
5

, b =
u1(1 +

√
5)/2− u1√
5

.

Exemple 3.9. Soit u la suite définie par l’équation de récurrence un + un−1 + un−2 = 0.
Le polynôme caractéristique est X2 + X + 1, dont les racines sont j = (−1 + i

√
3)/2 et j2

(les racines cubiques de l’unité). Les solutions sont donc de la forme un = ajn + bj2n. Soit
u0 et u1 les deux premières valeurs (arbitraires). On doit avoir

u0 = a+ b , u1 = aj + bj2

soit, en remarquant que 1 + j + j2 = 0 et que j2 = j̄,

a =
u0 − u1j
1− j2

, b =
u0 − u1j2

1− j
.
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Remarquons que si u0 et u1 sont réels, alors tous les termes de la suite doivent être réels.
Or, si u0 et u1 sont réels, les coefficients a et b sont conjugués. Les solutions sont donc de
la forme 2Re(ajn), i.e. sont réelles.

Dans le cas où le polynôme P a des racines multiples, on peut alors écrire

P =
k∏
i=1

(X − λi)mi ,

où mi ≥ 1 est la multiplicité de la racine λi. Les solutions ont la forme

un =
k∑
i=1

Pi(n)λni

où le polynôme Pi est de degré mi − 1.

Vitesse de convergence

Définition 24. Soit v une suite réelle décroissant vers 0 et soit u une suite (réelle ou
complexe) convergente de limite `. On dit que la suite u converge converge vers sa limite
à la vitesse v si |un − `| = O(vn).

Exemple 3.10. La suite u de l’exemple 3.3 converge vers sa limite π/4 à la vitesse 1/n.

3.1 Exercices

Exercice 3.1. Soit u et v deux suites à valeurs dans [0, 1] telles que limn→∞ unvn = 1.
Montrer que limn→∞ un = limn→∞ un = 1.

Exercice 3.2. Soit u une suite et ` un réel tels que limn→∞(un − un−1) = `.

(i) Montrer que limn→∞ n
−1un = `.

(ii) Si ` 6= 0, montrer que
∑n

k=1 uk ∼
1
2
`n2.

Exercice 3.3. (i) Calculer en fonction de n ≥ 2 la somme
∑n

k=2
1

k(k−1) .

(ii) En déduire que la suite u définie pour n ≥ 1 par un =
∑n

k=1
1
k2

est majorée.

(iii) En déduire qu’elle converge.

(iv) Soit ` sa limite (qu’on ne cherchera pas à déterminer). Montrer que un− ` = O(n−1).

(v) Montrer que pour tout r ≥ 2, la suite v définie pour n ≥ 1 par vn = 1+2−r+ · · ·+n−r
est convergente.
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Exercice 3.4. Le but de cet exercice est de prouver que la suite u définie par

un = 1 +
1

2
+ · · ·+ 1

n
− log n

est de Cauchy. On rappelle l’inégalité, valable pour tout u ∈ [0, 1],

0 ≤ log(1 + u)− u

1 + u
≤ 1

2
u2 .

Soit v la suite définie pour n ≥ 1 par vn = un+1 − un.

(i) Montrer que vn = 1
n+1
− log(1 + 1

n
).

(ii) Montrer que pour tout n ≥ 2, 0 ≤ −vn ≤ 1
2n2 ≤ 1

n−1 −
1
n
.

(iii) En déduire que pour m ≥ n ≥ 1, on a 0 ≤ −vn+1 − · · · − vm ≤ 1/n.

(iv) En déduire que la suite u est de Cauchy.

(v) En déduire que 1 + 1
2

+ · · ·+ 1
n

= O(log n).

Exercice 3.5 (Moyenne de Cesàro). Soit u une suite réelle convergente et soit ` sa limite.
Soit v la suite définie par vn = (u1 + u2 + · · ·+ un)/n, appelée la moyenne de Cesàro de la
suite u.

(i) Montrer que vn − ` = {(u1 − `) + (u2 − `) + · · ·+ (un − `)}/n.

(ii) Montrer que pour tout ε > 0, il existe un entier n0 tel que pour tout n ≥ n0,

|vn − `| ≤
1

n

n0∑
k=1

|uk − `|+ ε .

(iii) En déduire que la suite v converge vers `.

(iv) Donner un exemple de suite u divergente mais telle que sa moyenne de Césaro soit
convergente.

Exercice 3.6. Soit u une suite réelle convergente et soit λ sa limite. Soit v la suite définie
par vn = (u1 + 2u2 + · · · + nun)/n(n + 1). On rappelle que pour tout entier n ≥ 1,∑n

k=1 k = n(n+ 1)/2.

(i) Montrer que vn − λ/2 = (u1−λ)+2(u2−λ)+···+n(un−λ)
n(n+1)

.

(ii) Montrer que pour tout ε > 0, il existe un entier n0 tel que pour tout n ≥ n0,

|vn − λ/2| ≤
1

n(n+ 1)

∑
k=1

n0k|uk − λ|+
ε

n(n+ 1)

n∑
k=1

k.

(iii) En déduire que la suite v converge vers λ/2.

32



Application. Montrer que la suite v définie par

vn =
1

n(n+ 1)

n∑
k=1

2k2 + 3 sin(k)

3k + 5

est convergente et déterminer sa limite.

Exercice 3.7 (Généralisation de la sommation de Cesàro). Soit t une suite à termes positifs
telle que

∑n
k=1 tk =∞. Soit u une suite admettant la limite `. Montrer que

lim
n→∞

∑n
k=1 tkuk∑n
k=1 tk

= ` .

Exercice 3.8. Calculez les trois premiers termes, puis le terme général de chacune des
suites récurentes suivantes et déterminez sa limite (si elle existe).

(i) u0 = 1, u1 = 1, un+2 = un + un+1.

(ii) u0 = 1, u1 = 2, un+2 = 6un − un+1.

(iii) u0 = 1, u1 = 0 un+2 = −2un + 3un+1.

(iv) u0 = 1, u1 = 1, un+2 = −un + 2un+1.

(v) u0 = 1, u1 = 2, un+2 = −un − 2un+1.

(vi) u0 = 1, u1 = 0, un+2 = −4un + 4un+1.

(vii) u0 = 1, u1 = 1, un+2 = −
√

2un + 2un+1.

(viii) u0 = 1, u1 = 2, un+2 = −un + un+1.

(ix) u0 = 1, u1 = 0, un+2 = −un − un+1.

Exercice 3.9. Etudier la suite u définie par u0 > 0 et un+1 =
√

(u2n + 7un)/2− 1.

Exercice 3.10. Soient an et bn les suites définies de la façon suivantes :

a0 = 2, b0 = 1, an = (an−1 + bn−1)/2, anbn = 2.

(i) Montrer que ces deux suites sont bien définies, que an est décroissante, bn est crois-
sante, et ∀n ∈ N, an < bn.

(ii) Montrer que ∀n ∈ N, 0 ≤ an − bn ≤ (an−1 − bn−1)2/4.

(iii) En déduire que an et bn sont adjacentes et convergent vers
√

2.

Exercice 3.11. On considère la suite u définie par un =
∑n

k=0
1
k!

(en posant par convention
0! = 1). Le but de l’exercice est de montrer que la suite u de Cauchy et que sa limite, notée e,
est irrationnelle.

(i) Montrer que pour tout m ≥ n ≥ 1,
∑m

k=n+1
1
k!
< 1

n!
.

(ii) En déduire que la suite u est de Cauchy.

(iii) Soit e la limite de la suite u. Montrer que pour tout n ≥ 1, on a un < e < un+1/(n!).
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(iv) On suppose qu’il existe deux entiers p et q premiers entre eux (sans diviseurs com-
muns) tels que e = p/q. Montrer qu’il existe alors un entier n tel que n!e soit un
entier pour lequel on a n!un < n!e < n!un + 1. Conclure que e est irrationnel.

Exercice 3.12. Soient a, b, c, d des nombres complexes tels que ad − bc 6= 0. Soit f la
fonction (appelée homographique) définie sur C par h(z) = (az + b)/(cz + d).

(i) Déterminer, lorsqu’elle existe la réciproque de h.

(ii) Résoudre dans C l’équation h(z) = z.

(iii) On suppose dans toute la suite que a, b, c, d sont réels avec ad − bc = 1. Tracer le
graphe de la restriction de h à R.

(iv) Soit u la suite définie par :

u0 6= −d/c , un+1 = h(un) =
aun + b

cun + d
.

Etudier la suite un dans les cas suivants.

(a) c = 0 et |a| = 1.

(b) c = 0 et |a| < 1.

(c) c = 0 et |a| > 1.

(d) c 6= 0. On posera alors wn = cun + d et l’on supposera que a + d > 2 et
u0 /∈ [(a+ d)−1; 2[. (Pourquoi ?)

Exercice 3.13. Soit a > 0 et soit u la suite réelle définie par u0 6= 0 et

un+1 =
1

2

(
un +

a

un

)
.

On définit sur R∗+ la fonction f par f(x) = (x+ a/x)/2, x > 0.

(i) Montrer que pour tout x > 0, x 6=
√
a, f(x) >

√
a.

(ii) Montrer que si x >
√
a, alors f(x) < x.

(iii) En déduire que pour tout n ≥ 1, un ≥
√
a et la suite u est décroissante à partir du

rang 1.

(iv) Montrer que pour tout x > 0, f(x)−
√
a = (x−

√
a)2/(2x).

(v) En déduire que pour tout n ≥ 1, 0 ≤ un+1 −
√
a ≤ (un −

√
a)2/(2

√
a).

(vi) En déduire que la suite u converge vers a.

(vii) Montrer que pour tout γ > 0, un −
√
a = O(γn).

Exercice 3.14. Soit u et v deux suites réelles dont les termes sont strictements positifs.

(i) Montrer que si un a une limite non nulle ` et un ∼ vn alors limn→∞ vn = `.

(ii) Montrer que si un = O(vn) alors upn = O(vpn) pour tout p > 0.

(iii) Montrer que si un ∼ vn alors upn ∼ vpn pour tout p > 0.

(iv) On pose un = n et vn = n+
√
n. Montrer que un ∼ vn mais les suites α et β définies

par αn = eun et βn = evn ne sont pas équivalentes.
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