Polynomes et nombres complexes
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1 Polynomes

Définition 1 (Polynome). Un polynome a coefficients réels est une suite de nombres réels
ayant un nombre fini de termes non nuls. L’indice du dernier terme non nul est appelé le
degré du polynome. La suite dont tous les termes sont nuls est appelée polynome nul et
son degré et —oo. L’ensemble des polynomes a coefficients réels est noté R[.X].

Si g € N est le degré du polynéme P, on note ¢ = d°(P) et P = (ao, ..., a,) ou a; # 0,
nécessairement. On peut aussi noter P en utilisant I'indéterminée X de la fagon suivante :

q
P:ZaiXi:ao+a1X+~~+aqu.
=0

Un polynome P de degré zéro est une suite dont seul le premier terme ag est non nul.
Un tel polynome est appelé polynome constant, est identifié a son premier terme et on
note P = ay.



Addition des polynomes

Soit P et () deux polynomes. Le polynome P + @ est le polynome dont les coefficients
sont les sommes terme a terme des coefficients de P et . Si P = (ao, . .., ap) et Q = (bo, ;by)
avec p < ¢, alors

(ap +bo, . ..,a,+by) sip=gq,

P+Q=
@ {(ao+bo,...,ap+bp,bp+1,...,bq) sip<gq.

En notation avec l'indeterminée, on a, si p < ¢,
P+Q=> (a;+b)X" + ) biX'
i=0 i=p+1

ou la deuxieme somme est nulle par convention si p = q.

Multiplication des polyndémes

Soit P = (ao,...,a,) et Q@ = (by,...,b;) deux polynomes. Le polynome PQ est le
polynome dont les coefficients ¢; sont définis par

j
Cj:Zaibjfia 0<j<p+gq
i=0

en posant a; = 0si ¢ > pet b, =0 sii> q. Le polynome PQ est de degré d°(P) + d°(Q).
Son terme de plus haut degré est a,b, X?9. Si on utilise I'indéterminée X, on écrit

p+q J ‘
PQ = Z ( aibj_i> X/ ;
7=0 i=0

toujours avec la convention a; = 0 si ¢ > p et b; = 0 si ¢ > ¢. Notamment pour 7 = p + ¢,
le seul terme de la somme est a,b, et est nécessairement non nul.

Exemple Soit P=3X2+X+1et Q= X?— X2+ 2. Alors
PQ=0BX*+X+1)(X* - X?4+2)=3X" - 2X* +5X? 42X +2.
Multiplication par une constante Soit P un polynome et soit () un polynome con-

stant, () = ¢, ¢ € R. On notera cP le polynome P(@), dont les coefficients sont les coefficients
de P multipliés par c. Si ¢ # 0, alors d°(c¢P) = d°(P). Si ¢ = 0 alors cP = 0.

1.1 Division euclidienne

Théoréme 1. Soit A et B deuz polynomes, B # 0. Il existe un unique couple de polynomes
(@, R) tels que

A=BQ+R, d°(R)<dB).



Remarques

— L’unicité du couple (@, R) est garantie par la condition d°(R) < d°(B).

— Si le reste de la division euclidienne de A par B est nul, on dit que B divise A, ou
que B est un diviseur de A ou que A est un multiple de B.

— Les constantes non nulles divisent tous les polynomes.

Exemples
Division euclidienne de X* 4+ X? + 1 par X2 + 1.
X'+ X2+ 1=X5(X2+1)+1.
Division euclidienne de X% + X2 + 1 par X2+ X + 1.
X'+ X +1=(X’+X+1)(X* =X +1).
On obtient donc que X2+ X + 1 et X? — X + 1 divisent X4+ X2 + 1,

Définition 2 (Polynome irréductible). Un polynoéme P est dit irréductible si ses seuls
diviseurs sont les constantes et ses multiples constants cP, ¢ € R.

Proposition 1. Les polynomes de degré 1 sont irréductibles.

1.2 Fonction polynéme

Définition 3 (Fonction polynome). Soit P un polynome a coefficients réels, P = (aq, . . ., a,).
On appelle fonction polynome associée a P la fonction définie sur R par

q
T — Z qrt .
i=0

Par abus de notation, on note encore P cette fonction, et sa valeur en x est notée P(x).

Remarque 1l faut bien faire la différence entre I'expression ag + a1 X + - - + a,X?, qui
est un polynéome, élément de l’ensemble R[X], et, pour chaque z € R, le nombre réel
ap + a1x + - - - + a,2?, obtenu comme 'évaluation de la fonction polynome associée P en x.
Ce sont deux objets mathématiques de natures absolument différentes.

Définition 4 (Racine d’un polynoéme). Soit P un polynéme. Le nombre réel \ est appelé
racine de P si la fonction polynoéme associée a P s’annule en \.

Proposition 2. Soit P un polynome. Le nombre réel \ est une racine de P si et seulement
st X — X divise P.



On obtient comme conséquence immédiate de ce résultat que si P est de degré 2, P est
irréductible si et seulement si P n’admet pas de racines réelles. Rappelons quun polynome
de degré 2 aX? + bX + ¢, a # 0 admet des racines si et seulement si b> — 4ac > 0, et se
factorise alors de la fagon suivante

b+ VB2 — —b— /D2 — dac
aX2+bX+c:a<X— bt 2(; 4ac>(X_ b 2(; 4ac)‘

Théoréme 2. Les seuls polynomes irréductibles de R[X] sont les polynomes de degré 1 et
les polynomes de degré 2 sans racines réelles.

Définition 5 (Racine multiple). Soit P un polynéme. Le réel A est une racine de multi-
plicité (exactement) m si (X — \)™ divise P et (X — \)"™! ne divise pas P.

1.3 Décomposition en facteurs irréductibles

Théoreme 3. Tout polynome non nul P peut s’écrire de fagon unique comme un produit
de puissances de polynomes irréductibles :

q P
P=a][(xX =" J[(X*+b:X + )",
i=1 i=1
o1
-a#0;
— les nombres réels \; sont deux a deux distincts et les nombres q; sont des entiers non
nuls appelés multiplicités respectives des racines \; ;
~ les couples de réels (b;, c;) sont deuzr o deuz distincts et tels que b? — 4c; < 0; les
nombres p; sont des entiers non nuls.

Exemple On a déja vu que l'on peut factoriser X% + X2 + 1 de la faccon suivante :
X'+ X+1=(X+X+D)(X2 =X +1).

Or X2+ X +1et X2~ X +1 n'ont pas de racines réelles donc sont irréductibles, donc on
a bien obtenu la décomposition en facteurs irréductibles de X* + X2 + 1.

Corollaire 1. Soit P un polynome admettant n racines disctinctes. Alors d°P > n.

Corollaire 2. Soit P un polynome de degré au plus n tel que la fonction polynome associée
a P s’annule en n + 1 nombres réels distincts. Alors P est le polynome nul.

Ce résultat peut étre utilisé de la fagon suivante. Si P et () sont deux polynomes de
degré au plus n, et telle que les fonctions polynomiales associées coincident en n+1 nombres
réels disctints, alors P = (). Nous donnons deux applications de ce résultat tres utile.



Exemple Soit P un polynome quelconque. Grace au résultat précédent, on peut identifier
le reste de la division euclidienne de P par X? — 1 sans avoir besoin de I'effectuer. Soit Q et
R le quotient et le reste de la division euclidienne de P par X?—1,i.e. P = (X?—-1)Q+ R,
avec d°(R) < 1. Puisque —1 et 1 sont les racines de X? — 1, si l'on évalue P en —1 et 1,
on obtient

P(1)=R(1), P(-1)=R(-1).
Soit S = aX + b un poylnome de degré au plus 1 qui coincide avec P en 1 et —1. On a
alors
a+b=P(l), —a+b=P(-1),
d’ou
P(1)+ P(—1)
5 .
Le polynome S ainsi défini coincide avec R en 1 et —1, R et S sont de degré au plus 1,

donc R = S. On a donc identifié le reste de la division euclidienne de P par X2 — 1, sans
connaitre P explicitement.

a = 5 b:

Polynomes interpolateurs de Lagrange

Soit x1, ..., z, n nombres réels deux-a-deux distincts et soit ¥, ..., y, n nombres réels.
On peut toujours supposer que les x; sont ordonnés, i.e. 1 < --- < x,. Le probleme de
'interpolation consiste a trouver une fonction f définie au moins sur Uintervalle [z, z,]
telle que f(z;) = y;. On peut considérer plusieurs méthode, chacune ayant sa justification
et ses limitations propres. Nous considérons ici le probleme de I'interpolation polynomiale.

Théoreme 4. Soit x1,...,x, n nombres réels deux-a-deux distincts et soit yi,...,Yp N
nombres réels. Il existe un unique polynome de degré au plus n — 1 tel que la fonction
polynome associée a P prenne la valeur y; en xz;, soit avec un abus de notation, P(x;) = y;.

Démonstration. 11 s’agit d’un résultat d’existence et d’unicité. Nous allons prouver 1’exis-
tence en exhibant un tel polynome, et I'unicité en utilisant le Corollaire 2. Pour j = 1, ..., n,
soit @); le polynome défini par

Yj
’ Hi;ﬁj(xj — ;) g
Chaque polynéme @Q; vérifie d°Q =n—1siy; #0et Q; =0siy; =0, Qj(x;) =0si i # j
et Q;(z;) = y;. Soit maintenant P le polynéme défini par

P = ZQ; —ZWH(X—%) :
j=1 LHAINTT T g
Alors d°(P) <n —1et P(xj) = y; pour tout j = 1,...,n. Prouvons maintenant 1'unicité.
Soit  un polynome de degré au plus n — 1 tel que Q(z;) =y;, 1 < j < n. Alors P et @
sont de degré au plus n — 1 et coincident en n nombres réels distincts, donc sont égaux par
le corollaire 2. O]



Remarque Cette méthode est en pratique une tres mauvaise méthode d’interpolation.
Son intérét est essentiellement théorique.

Polynomes premiers entre eux

Définition 6 (Polynomes premiers entre eux). Deux polynomes sont dits premiers entre
eux si leurs décomposition en facteurs irréductibles n’admet aucun facteur commun.

Exemple 1.1. Les polynomes X4 —2X?% + 1 et X* 4+ 2X?2 4 1 sont premiers entre eux.

Proposition 3. - 51 P et QQ sont deux polynomes premiers entre euz divisant le méme
polynome R, alors PQ) divise R.
— Deux polynomes premiers entre eux n’ont pas de racines communes.

Théoréme 5 (Bézout). Soit P et Q deux polynomes premiers entre euz. Il existe alors
des polynomes A et B tels que AP + BQ = 1. On peut de plus choisir de fagon unique A
et B tels que d°(A) < d°(Q) et d°(B) < d°(P).

Corollaire 3. Soit P et () des polynomes premiers entre eux. Pour tout polynome R, il
existe des polynomes U et V tels que R=UP + V Q.

1.4 Polynome dérivée

Soit P un polynome, P = ap + a1 X + --- + a,X? On appelle polynome dérivée de P
le polynoéme, noté P’, défini par

q
P'=ay 420X 4+ qa X =) ja X070

=0
On définit les polynomes dérivés d’ordre supérieur par récurence : P = (P(=1Y’

Proposition 4. — La fonction polynome associée au polynome dérivé de P est la dérivée
de la fonction polynome associée a P.
~ P™ =0 si et seulement d°(P) < n — 1.
— X\ est une racine de multiplicité exactement m du polynome P si et seulement si \
est une racine de P mais n’est pas une racine de PHY .
On a vu que 'on peut identifier un polynome de degré n par ses valeurs en n+ 1 points.
On peut aussi identifier un polynéme de degré n par les valeurs de ses dérivées successives
en un point fixe a.

Proposition 5. Soit P un polynome de degré au plus n. Soit a un nombre réel tel que
P(a) =0 et P®(a) =0 pour k=1,...,n. Alors P = 0.



Démonstration. Supposons que d°(P) < 0. Alors P = ag et P(a) = 0 implique ag = 0,
d’ou P = 0. Procédons maintenant par récurrence. Supposons que pour un nombre entier
n > 1, on ait prouvé que tout polynome de degré au plus n—1 dont les dérivées successives
s’annulent en un méme point soit nul. Soit maintenant P un polynome de degré au plus
n, P =3%",aX" tel que P et toutes ses dérivées successives s’annulent en a. Puisque
P™ est le polynéme constant nla,, si P(”)(a) = 0, on a nécessairement a,, = 0, et donc P
est de degré au plus n — 1. On peut donc applique 'hypothese de récurrence a P, et 'on
obtient P = 0. O]

Comme précédemment, on peut écrire ce résultat sous une form équivalente. si P et ()
sont deux polynomes de degrés au plus n et a est un nombre réel tel que P(a) = Q(a) et
P®(a) = Q™ (a) pour k = 1,...,n. Alors P = Q. On obtient alors le corollaire suivant

tres important.

Corollaire 4. Soit P un polynéme et a un nombre réel. Soit P (a), 1 < k < n les valeurs
des dérivées successives de la fonction polynomiale associée a P. Alors

" pk)(g
P:P(a)+zpk!( )(X—a)"‘.

On utilise en général la convention P®) = P et 1’on écrit alors

" pk)

P=%" k!<a> (X —a)*.
k=0

1.5 Exercices

Exercice 1.1. Trouver tous les polynomes P de degré inférieur ou égal a 3 tels que P(0) =
1, P(1) =2, P(2) = —1 et P(3) = —2.

Exercice 1.2. Déterminer tous les polynomes P € R[X] de degré 3 tels que
PX+1)—-PX-1)=X>+1.

Exercice 1.3. Effectuer la division euclidienne de A par B dans les cas suivants :
1. A=X*—-1, B=X+2,
2. A=X'+X3-X?+X+1, B=X?-X+1,
3. A= X1 +2X34+4X%+2, B=X?’+X+1.

Exercice 1.4. Déterminer sans calculs le reste de la division euclidienne de (cosa +
X sina)™ par X%+ 1.

Exercice 1.5. Le polynome X* + 4 est-il irréductible dans R[X]?

Exercice 1.6. Factoriser dans R[X] le polynome X° + 1.



Exercice 1.7. Soit 6 € R. Factoriser dans R[X] le polynome X* — 2X? cos() + 1.

Exercice 1.8. Soit a # b. Si les restes des divisions euclidiennes d’un polynome A par
X —a et par X — b sont « et 3, respectivement, quel est le reste de la division de A par

(X —a)(X —b)?

Exercice 1.9. Montrer que sin > 2 (1—X")(1+ X) —2nX"(1 — X) —n?X"(1 — X)? est
divisible par (1 — X)3.

Exercice 1.10. Déterminer a et b pour que a X" +bX" + 1 admette la racine double 1.
Quel est alors le quotient de aX™ ™ + X" + 1 par (X —1)27?

Exercice 1.11. Soit P € R[X] n’ayant pas de racine réelle. On suppose que P(z) > 0
pour tout x € R. Montrer qu’il existe A et B dans R[X] tels que P = A? + B2

2 Nombres complexes

On a vu que certains polynomes sont irréductibles dans R, ce qui est équivalent a dire
qu’ils n’admettent pas de racines réelles. De méme que certains polynomes a coefficients
rationels n’ont pas de racines rationelles, mais ont des racines réelles, peut-on construire un
ensemble contenant R, auquel on pourrait étendre I'addition et la multiplication, et dans
lequel les polynomes du second degré ne seraient pas irréductibles 7 Et quel serait 1'intérét
d’une telle construction? C’est 'objet de cette section de définir les nombres complexes
et de montrer leur utilité. Il existe plusieurs constructions, a partir d’idées algébriques ou
géométriques, mais I’étude des propriétés des nombres complexes repose toujours en fin de
compte sur les propriétés fondamentales topologiques de la droite réelle. Nous choisissons
une approche algébrique, puis nous montrerons les propriétés géométriques des nombres
complexes.

Soit ~ la relation défine sur R[X| x R[X] par
P~Q& X?+1divise P—Q .

Cette relation est appelée relation d’équivalence, car elle a les propriétés suvantes.
— Réflexivité : VP € R[X], P ~ P. En effet, P — P =0, donc X? + 1 divise P — P.
— Symétrie. Il est clair par la définition que P ~ Q) < ) ~ P.
— Transitivité. Si P ~ Q et Q ~ R, alors P ~ R. En effet, si X2 + 1 divise P — Q et
Q— R, alors X2+ 1divise P~-Q+Q—R, et P-Q+Q—-R=P—R.
Cette relation est de plus compatible avec les opérations sur les polynomes.

Proposition 6. Si P~ P et Q ~ Q" alors P+ P ~ Q+ Q' et PP ~ QQ'.

Soit P € R[X]. La classe d’équivalence de P, notée C(P) est le sous ensemble de R[X]
constitué de tous les polynomes @) tels que P ~ (). En particulier, P est dans sa propre
classe d’équivalence. Si P et () sont dans la classe d’équivalence d’'un méme polynome R,



alors par transitivité, P ~ (). Ceci entraine que deux classes d’équivalences sont disjointes
ou égales, i.e. si C(P) NC(Q) # 0, alors C(P) = C(Q). Les classes d’équivalences pour la
relation ~ forment donc une partition de R[X].

Remarquons maintenant que ’on peut choisir un représentant particulier dans chaque
classe d’équivalence, qui est le reste de la division euclidienne par X2 + 1 d’un polynome
quelconque de la classe.

Proposition 7. Soit C une classe d’équivalence pour la relation ~. Il existe un unique
polynome de degré 1 appartenant a la classe. C’est le reste de la division euclidienne par
X2+ 1 de n’importe quel élément de la classe.

Démonstration. Soit C une classe d’équivalence et P € C. Soit R le reste de la division
euclidienne de P par X? + 1. Par définition, d°(R) < 1 et il existe un polynéome Q tel
que P = Q(X? + 1) + R. Soit maintenant P’ € C. Alors X2 + 1 divise P — P, i..

il existe un polynome S, éventuellement nul, tel que P — P’ = (X2 + 1). On a donc
PP=P —-P+P=SX?+1)+Q(X?+1)+ R, et donc R est aussi le reste de la division
euclidienne de P’ par X? + 1. L’unicité suit. O

Il est maintenant possible de définir I'ensemble C des nombres complexes, et 'addition
et la multiplication dans C.

Définition 7. L’ensemble C est I’ensemble des classes d’équivalences pour la relation ~.
Les éléments de C sont appelés nombres complexes. Soit z, 2 deux nombres complexes, et
soit P, P" des polyndmes dont les classes d’équivalences sont z et 2/, respectivement.
— Le nombre complexe z + 2’ est la classe d’équivalence de P + P’, qui ne dépend pas
du choix particulier de P et P’.
— Le nombre complexe zz’" est la classe d’équivalence de PP’, qui ne dépend pas du
choix particulier de P et P'.

Le fait que z + 2’ et 2z’ ne dépendent pas du choix de P et P’ est une conséquence de la
proposition 6. Considérons maintenant les représentants de degré 1 de z et 2/, soit a + b.X
et a +b'X.

— Le représentant de degré 1 de z + 2" est a+a’ + (b + ') X.

— le représentant de degré 1 de zz’ est aa’ — bb' + (ab’ + a’b) X.

La premiere propriété est évidente. Pour vérifier la seconde, il faut effectuer la division
euclidienne de (a + bX)(a' + ¥ X) par X? 4+ 1. On a

(a+bX)(d +VX)=b(X*>+1)+ (ab + a'b) X + ad’ — bl .

Le reste de la division euclidienne de (a +bX)(a’ +¥ X) par X2+ 1 est donc (ab’ +a'b) X +
aa’ — bb', qui est donc le représentant de degré 1 de z2’.
L’ensemble C peut donc étre identifié & R? muni des opérations suivantes

(a,b) + (d'V)=(a+d,b+b), (ab)-(a'b) = (ad" —bb, ab —a'b) .



L’ensemble R peut alors étre identifié au sous-ensemble de R? formé des couples de la
forme (a,0), et on notera a(a’,t’) le produit (a,0) - (a’,a’). Tout nombre complexe (a, b)
peut donc étre écrit sous la forme
(a,b) =a(1,0)+b(0,1) .
La multiplication définie plus haut entraine la relation fondamentale suivante
(0,1)-(0,1) =—1.

Pour parvenir a I’écriture usuelle des nombres complexes, on va introduire la notation
i=(0,1) et comme on a déja identifié le nombre complexe (1,0) avec le nombre réel 1, on
peut alors écrire tout nombre complexe z sous la forme

z=a+1ib.
L’identité (0,1) - (0,1) = —1 prend maintenant la forme célebre
?=-1.
Les nombres complexes de la forme (a,0) sont identifié aux nombres réels, et les nombres
de la forme (0, b) ou ib sont appelés imaginaires purs.

L’ensemble C a la méme structure algébrique que R : ¢’est un corps. Notamment, tout
nombre complexe non nul admet un inverse pour la multiplication. Soit z = a + ib avec

ab # 0. Alors

. a . b
(a +1ib) x (a2+62_1a2+b2) =1.

Définition 8 (Partie réelle, partie imaginaire, conjugué, module). Soit z un nombre com-
plexe, z = a + ib. Le nombre réel a est appelé partie réelle de z et noté Re(z). Le nombre
réel b est appelé partie imaginaire de z, et noté Im(z). Le conjugé de z, noté z, est le
nombre complexe a — ib et le module de z, noté |z|, est le nombre réel positif v/2Z.

L’écriture d’un nombre complexe z sous la forme z = a+ib avec a, b réels est unique, et
appelée représentation cartésienne du nombre complexe z. Cette unicité signifie que deux
nombres réels z et 2z’ sont égaux si et seulement si leurs parties réelles et imaginaires le
sont :

z =2 <= Re(z) = Re(?') et Im(z) = Im(2') .
En particulier,
z2=0 <= Re(z) =0et Im(z) =0.

On obtient aisément les identités suivantes
zZ2+Z zZ—Z
Re(z) = 5 Im(z) =

On en déduit immédiatement qu'un nombre complexe est réel si et seulement si il est égal
a son conjugué, et imaginaire pur si et seulement si il est égal a I'opposé de son conjugué.

zeERe 2=z, z€e€iR&sz2=—%2.

10



Exemple Soit a, a’, b, b’ des nombres réels et soit z = a +ib et 2/ = a’ +1ib'. Si 2/ # 0,
déterminons les parties réelle et imaginaire de la fraction z/z’.

z 2z ad + bV +i(a'b— ab')
; - 2/2/ - (1,,2 4 b/2 .
On a donc
aa’ + bt a'b — ab
Re(z/z/) = m s Im(z/z') = m .
Proposition 8. Soit z,2 € C.
2 =27 2 =2", 2| = |||, |27 = |2
SiZ #0,
(O |
(Z/Z) > ’ % ‘ /’

Polynoémes a coefficients complexes

Définition 9 (Polynéme a coefficients complexes). Un polynome a coefficients complexes
est une suite de nombres complexes ayant un nombre fini de termes non nuls. L’indice
du dernier terme non nul est appelé le degré du polynome. La suite dont tous les termes
sont nuls est appelée polynome nul et son degré est —oo. L’ensemble des polynomes a
coefficients complexes est noté C[X].

A un polynome a coefficients complexes, on peut associer une fonction polynémiale
comme dans le cas des coefficients réels.

Définition 10 (Fonction polynéme). Soit P un polynéme a coefficients complexes, P =
(ag, ..., a,). On appelle fonction polynome associée a P la fonction définie sur R par

q
r — g gt .
i=0

Par abus de notation, on note encore P cette fonction, et sa valeur en x est notée P(x).
Une racine complexe d'un polynéme P est un nombre complexe z tel que P(z) = 0.

Par exemple, nous savons maintenant que le nombre complexe i est une racine complexe
du polynéme X? + 1 puisque i = —1. Le polynoéme X2 + 1 est donc factorisable dans C :
X?+1= (X —1i)(X +1). Ce polynoéme qui est irréductible dans R ne 'est plus dans C.
C’est en fait vrai de tous les polynomes de degré 2 irréductibles dans R.

Théoréme 6 (D’Alembert-Gauss). Les seuls polynomes irréductibles de C[X] sont les
polynomes de degré 1.

Corollaire 5. Tout polynome de degré n a coefficients complexes admet n racines (non
nécessairement toutes distinctes).

Théoreme 7. Les racines complexes d’un polynome a coefficients réels sont deux a deux
conjuguées.
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Dérivée d’un polynoéme a coefficients complexes

On peut dériver formellement les polynomes a coefficients complexes de la méme facon
que les polynomes & coefficients réels. Si P = " ja; X", ou les coefficients a; sont com-
plexes, alors on définit & nouveau le polynéme dérivée P’ de P par

n n—1
— ZiaiXH — Z(z’ + Dag1 X"
=1 =0

Exponentielle complexe, sinus, cosinus, 7

Considérons maintenant I’ensemble S! des nombres complexes de module 1, i.e. 'ensem-
ble des nombres complexes z tels que (Re(z))? + (Im(z))? = 1. Cet ensemble est identifiable
a cercle unité du plan R2. Pour définir I’exponentielle complexe, nous allons donner une
définition rigoureuse du nombre réel 7 et de la fonction cosinus.

Définition 11 (Le nombre 7). Le nombre réel 7 est la longueur du demi-cercle, définie
par

/ Vode 5 / 'ode

T= —_— = —_— .

1V 1 — 22 0o V1 — 22

Nous allons maintenant définir pour x € [—1,1] la fonction arccos(z) (arc-cosinus)

comme la longueur de I'arc de cercle compris entre le point (0,1) et le point du cercle
d’abcisse z. Cf. Figure 1.

arccos(z)

—1z 0 1
FIGURE 1 — Le demi-cercle unité, la fonction arc-cosinus

Définition 12 (Cosinus, sinus, exponentielle complexe).

— La fonction arc-cosinus notée arccos est la fonction continue strictement décroissante
définie sur [—1, 1] par

1
(2) / dt
arccos(z) = — | — .
z V1—1?
— La fonction cos (cosinus) est la remproque de arccos sur [0, 7]. La fonction sin (sinus)

est la fonction défine sur [0, 7] par sin(6) = y/1 — cos?(6). On prolonge a R la fonction
cos par parité et 2w périodicité, et la fonctlon sin par 1mpar1te et 2m-périodicité.
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La fonction qui a 6 € [0, 7] associe le nombre complexe du demi-cercle unité z = '
est une bijection de [0, 7] sur le demi-cercle. Son extension a R n’est pas bijective mais
conserve la propriété

eiG

Vo e R, = cos?(0) + sin?(f) =1 .

Elle a de plus la propriété fondamentale suivante.
Théoreéme 8. Pour tout 0,0 € R, on a e!@+?) = e%i?"

On dit que 'exponentielle complexe est un morphisme du groupe additif de R sur le
groupe multiplicatif de C.

Preuve du Théoreme 8. 11 suffit de prouver la propriété pour 6,60 € [0, 7] tels que 0 4 0’ €
[0, 7], et pour cela il suffit de prouver que si z, 2’ et zz’ sont sur le demi-cercle unité
supérieur, alors arccos(Re(zz’)) = arccos(Re(z)) + arccos(Re(z’)). Si 'on note z = Re(x)
et x = Re(x), alors il faut montrer

/1 dt +/1 dt _/1 dt
« V1I—12 o V1—12 zx!' —y/(1—z2)(1—z'2) V 1—1¢2 '

Fixons 2’ et notons g(z) le membre de droite. Pour x = 1, on a bien 1’égalité des deux
membres. Il suffit donc de montrer que 'on a égalité des dérivées par rapport a x des deux
membres. En appliquant la formule des dérivées composées, on obtient

g(x) = L y {m M} N
\/1— (:Bm’_ \/(1—I2)(1—$/2))2 m m

ce qui conclut la preuve. O

Quelques valeurs remarquables
6021, el7T/2:i’ em:_1’ e317r/2:_i7 62”:1.

Théoreme 9. La fonction exponentielle est périodique de période 2im : pour tout nombre
complexe z, on a

ez+217r — % .
On peut étendre l'exponentielle complexe a tout C.
Définition 13. La fonction exponentielle complexe est définie sur C par

e® = R {cos(Im(z)) + isin(Im(2))} .

L’exponentielle complexe ainsi étendue conserve la propriété de morphisme de groupes.

13



o, . / /
Proposition 9. Pour tout z,2' € C, on a e*t% = e%e* .
Démonstration. Posons z = x + iy et 2/ = x +1iy’. On a alors, par définition

! VA !
*t? — gt el(y+y) )

En utilisant les propriétés de ’exponentielle réelle, et le théoreme 8, on obtient donc
24z ex+x’ei(y+y’) iy iy’ z iy 7 iy’ 2,2 .

e = %" e = e%eYe” Y = ¢fe

Autres propriétés Pour tout z € C, on a

exp(z) = exp(z), [|e°] = eReB) | & HIm — o7
Pour tout 8 € R, on a
0 i 0, —i0
e’ +e . e’ +e
cos(f) = 5 sin(f) = 5

On obtient aussi aisément les formules usuelles de trigonométrie.

cos(f 4+ 0') = cos(f) cos(8') — sin(f) sin(8') ,

sin(f + 6') = cos(0) sin(8') + sin(8) cos(¢') ,
cos(20) = 2(9) —sin?(0) = 2cos?(A) — 1 =1 — 2sin?(0) ,
sin(20) = 2 cos(0) sin(h) .

On en déduit les formules de transformation de produits en sommes et de sommes en
produits et les premieres formules de linéarisation qui seront généralisées ultérieurement.

cos(f) cos(f') = %cos(@ +6)+ % cos(6 —0") ,
sin(f) sin(8') = %COS(Q +6') — %cos(@ -0,

1 1
sin(f) cos(#') = 3 sin(6 + 60") + +3 sin(6 —0") ,

cos() + cos(0') = 2 cos (9 J; 9/) ( )
0— 0

)

)

\)

cos(f) — cos(A") = 2 cos (9 0 ) sin

(
) (5

(\V]

sin(0) + sin(¢') = 2sin (

(\V]

1+ 008(29) cos 29)

cos?(0) = , sin?(9) =

14



Interprétation géométrique des nombres complexes

Tout point du plan R? peut étre représenté par un nombre complexe z appelé I'affixe.
Si z # 0, alors z/|z| est dans le cercle unité, et donc il existe un unique 6 € [0, 7] tel que
z = |z|e??. Le nombre 6 est alors appelé I'argument de 2z, noté arg(z). Si 2’ est un nombre
complexe tel que 2/ = 7el? | alors 22/ = rr'e?*? ie. [22/| = rr’ et arg(z + 2') = 0 + &'
(modulo 27).

La multiplication par un nombre complexe non nul z peut donc étre vue comme une
transformation géométrique. Soit r = |z| et § = arg(z). Soit A un point du plan d’affixe 2’.
Alors 22" est affixe du point obtenu par rotation d’angle 6, et homothétie de rapport r.
Une telle application, composéé d’une rotation et d’'une homothétie est appelée similitude.
Cf. Figure 2.

74

FIGURE 2 — La multiplication par z

Grace a cette interprétation, on voit aisément comment trouver une racine carrée de
tout nombre complexe. Soit z € C, z # 0. Soit 7 son module et # son arguemnt, i.e. z = re'?.

Les racines carrées de z sont donc les nombres complexes z; et 2o définis par

s = 2 = 72 =\ frei®/2m)

Remarquons que si z € R, alors les reux racines carrées de z sont réelles, et par
convention on dénote /2 la racine positive. Si z € R* | alors les reux racines carrées de z
sont imaginaires pures.

Résolution des équations du second degré a coefficients complexes

Nous pouvons maintenant résoudre les équations du second degré a coefficients com-
plexes. Soit a, b, ¢ trois nombres complexes, a # 0. Montrons que 1’équation

aX?+bX +¢=0

admet toujours deux racines (éventuellement confondues) dans C. On utilise la méme
décomposition que dans le cas réel.

b\? B2—4
aX?+bX +ce=ald (X +—) =229l
2a 4a2

15



La discussion quant au signe de b*> — 4ac n’a plus de raison d’étre. Soit z; une racine carrée
(complexes) de (b*> — 4ac)/4a*. On a alors

b b
aX*4+bX +e=a|X+——2 ) ([ X+—+2] .
2a 2a

Les racines complexes de 'équation aX?+bX +c = 0 sont donc —b/(2a)+2; et —b/(2a)+ 21,
ce que 'on peut écrire symboliquement

B —b++Vb? — 4ac —b — \/b% — 4ac

2a = 2a

Remarquons que si les coefficients a, b, et ¢ sont réels, alors les racines sont réelles si
b%* — 4ac > 0, ou complexes et conjuguées si b*> — 4ac < 0.

|

Racines n-iemes de ’unité

L’équation X™ = 1 admet une ou deux racines réelles, selon la parité de n. Dans C, elle
admet exactement n racines.

Proposition 10. Les racines n-iemes de ['unité sont les racines de l’équation X" = 1,
définies par

2ikm

z=en , 0<k<n-1.

Les racines n-iémes autres que 1 sont les racines de ’équation
X" l4. ..+ X+1=0.

La derniere propriété résulte de la factorisation X" —1 = (X — 1)(X" 1 4. -+ X +1).
Toute racine n-ieme de I'unité z différente de 1 vérifie donc la relation 2" +---4+2z+1 = 0.

Les racines n-iemes de I'unité peuvent étre représentées graphiquement sur le cercle
unité. Cf. Figure 3 ol sont représentées les racines cubiques de 'unité, 1, j = e%7/3 et
j? = e¥™/3 = j. Du fait de la factorisation X — 1 = (X — 1)(X? + X + 1), on remarque
que j et j? sont les racines de I’équation a coefficients réels X? + X + 1 = 0, et sont donc
complexes conjuguées.

j2

FIGURE 3 — Les racines cubiques de 'unité

De méme, pour tout réel z # 0, 'équation X™ = z admet n racines distinctes, zg, ..., 2,1,
appelées racines n-ieme de z. Si z = rel?, avec r > 0 et 6 € [0,27[, on a

zk:rl/”eike/n, 0<k<n-1.
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Utilisation des nombres complexes pour le calcul des sommes
trigonométriques

Soit z un nombre complexe différent de 1. On a l'identité

2" —1

A R :
z—1

Posons r = |z| et soit 6 € [0, 27 tel que z = rel?. On a donc

—_
—_

n— n— i

k k ik re™? — 1

¥ = rret = ———.
re —1

I
=)
I
=)

% %

Déterminons les parties réelles et imaginaires du membre de droite.
rnein? — B (rme™? — 1) (re”¥ — 1)
rel —1 — (rel —1)(re1¢ — 1)
r"*cos((n — 1)0) — r" cos(nf) — rcos(d) + 1
B r2 —2rcos(f) + 1
™ sin((n — 1)0) — r™sin(nf) — rsin(0)
: r2 —2rcos(f) + 1

En identifiant parties réelles et imaginaires, on obtient les identités

3
—

r"cos((n — 1)0) — r" cos(nf) — rcos(f) + 1

" cos(kb) =
r* cos(ko) r2 —2rcos(f) + 1 ’

(]

0
-1

¥ sin(k0) =

~.
|

3

r"sin((n — 1)0) — r"sin(nd) — rsin(0)
r2 —2rcos(f) + 1

n—1 in .
Zeike _°© : -1 _ i(n—l)O/QSln(ne/Q) .
— el — 1 sin(0/2)

En identifiant parties réelles et imaginaires, on obtient

n—1 ~ cos((n — 1)0/2) sin(n0/2)
; cos(kf) = sin(6/2) ’

et _ sin((n —1)8/2)sin(0/2)
;sm(k@) = sin(6/2) '
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Linéarisation

L’exponentielle complexe permet de transformer des puissances des fonctions trigonométriques
en sommes. Ce procédé sera utile pour les calculs d’intégrales. Rappelons la formule du
binome, valable pour a, b nombres complexes quelconques :

(a+b)" = Z (Z) akpnr
k=0

avec (Z) = k(n—k Appliquons cette formule pour calculer cos™(#).

= (T B Qe - ()
—9n :O (Z) cos((2k — n)@) +i27" ; (Z) sin((2k — n)f) .

Le membre de gauche de cette équation est réel, donc le membre de droite doit 1’étre aussi.
On en déduit donc les deux identités, valables pour tout € € R :

n

cos"(B) =27y (Z) cos((2k — n)A)

k=0

S ( sini(2k ) 0.

De la méme facon, on obtient, en remarquant que 1/i = —i = —e/™/2,

Slnn(e) _ e —e — 9 Z k m7r/2 1(2k n)o
2i
=27 (Z) (—=1)* cos(nm/2 + (2k — n)f) +i27" (Z) (—1)*sin(nm/2 4+ (2k —n)0) .
k=0
Par identification des parties réelle et imaginaire (nulle), on obtient les formules

sin”(f) =27" Z (Z) (=1)* cos(nm/2 + (2k — n)B) ,

k=0

) < ) Ve sin(nm/2 + (2k —n)f) = 0.
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On peut simplifier les formules précédentes en distinguant selon la parité de n.

cos?(0) = 2~ 2q{1+22( )cos 2q—2k)0)}

cos?t () = 274 Z (2]3) cos((2¢ + 1 — 2k)0) ,

k=0

sin () = 272(— {1 + 22 ( ) )¥ cos((2q — Qk)e)}

sin®tt(9) = 2729(—1)7! Z (2‘-’; 1) (—1)"sin((2q + 1 — 2k)0) .

Inversement, on obtient des formules pour exprimer cos(nf) et sin(f) comme polynomes
trigonométriques.

cos(nf) = Re (e"”) = Re ((cos(f) + isin(6))") = Z (Z) Re(i" %) cos®(z) sin" ¥ () ,

k=0

sin(nf) = Im (e™’) = Im ((cos(d) + isin(6))") = Z <Z) Im(i" %) cos® () sin" " (x) .

k=0

En utilisant la relation cos?() + sin?(#) = 1, on peut réécrire les formules ci-dessus en ne
faisant intervenir qu'une seule fonction trigonométrique.

Exemples

Linéarisons cos*(f) et sin*(#). En appliquant les formules, on obtient

1 1 1
cos*(0) = 27*{1 + 8 cos(20) + 2 cos(46)} = 16 +3 cos(20) + 3 cos(46) ,
1

1
sin(0) = 27*{1 — 8 cos(20) + 2cos(46)} = 176”3 cos(20) + écos(49) :

Remarquons a titre de vérification que pour ¢ = 0, le membre de droite de la derniere
formule est bien nul. Exprimons mainteant sin®() comme un polynéme trigonométrique en
sinus. On va appliquer la formule générale obtenue plus haut, en remarquant que Im(i*) = 0
si k est pair et Im(i¥) = (—=1)7 si k = 2¢ + 1, puis remplacer tous les cosinus par des sinus.

sin(56) = sin®() — 10 cos?(#) sin®(6) + 5 cos*(0) sin(6)
= sin®(0) — 10{1 — sin®(#)} sin®(#) + 5{1 — sin?(#) }*sin(0)
= 16 sin°(#) — 20sin*(0) + 5sin(0) .

On remarquera dans les formules précédentes les parités des termes.

19



2.1 Exercices
Exercice 2.1. Quels sont les nombres complexes dont le carré est égal au conjugué ?
Exercice 2.2. Montrer que

(242 €Ret zz' € R) <= (z et 2’ sont réels ou 2’ = z2).

Exercice 2.3. Déterminer et représenter ’ensemble des points M du plan dont I'affixe z
vérifie 'égalité z + z + 22 = 0.

Exercice 2.4. z, y et z étant trois nombres complexes de module égal a 1, comparer les
modules des nombres complexes © + y + 2z et xy + yz + 2.

Exercice 2.5. Mettre sous la forme a + ib (a,b € R) les complexes

1—3i 2 —3i\? i+5
3—i 7 \1+7) 7 (i+3)?2°

Exercice 2.6. Montrer que (14 21)(2—31)(2+1)(3 — 2i) est réel sans en calculer la valeur.

Exercice 2.7. Calculer les racines carrées des nombres complexes 1 +1iv3, 8 — 61 et
8i — 6.

Exercice 2.8. Résoudre dans C I'équation 2% — (2 + 6i)z + 2i — 5 = 0.

Exercice 2.9. Calculer les racines carrées dans C des nombres suivants : 100, —100, 3+ 44,
-5 — 12i.

Exercice 2.10. Donner en fonction de 6 'argument des nombres complexes suivants :
z1 = cosf —isinb,
Zzog = —sinf + i cos b,
23 = sinf + i cos 6,
zy = —sinf — 1 cosb,

z5 = —cosf +isind.

Exercice 2.11. Soit a, b et ¢ les trois nombres complexes définis par

VIV, 13

- — —1—

2 2 2 2’
Donner un argument de c.

Exercice 2.12. Déterminer les racines cubiques de —v/3 + 1 et représenter leurs images
dans le plan complexe.

Exercice 2.13. Calculer (1 — 2i)*, puis résoudre dans C I'équation 2* = —7 + 24i.
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Exercice 2.14. Calculer les racines cubiques de z = (1 —1)/v/2.
Exercice 2.15. Trouver tous les couples (z,y) réels tels que (1 +14)/(1 — i) = ze®.
Exercice 2.16. Donner sous forme cartésienne les racines de I’équation
(3+7i)2% —8(1 +2i)z+4(1+1) =0.
En déduire les solutions de 1’équation
(3—7Ti)z2 —8(1 —2i)z+4(1 —xi) =0 .

Exercice 2.17. Soient A, B et C les points du plan complexe d’affixes respectifs a, b et
c. Montrer que le triangle ABC' est équilatéral si et seulement si on a a + bj + ¢j*> = 0
ou a + bj> + ¢j = 0 olt j est la racine cubique de I'unité de partie imaginaire strictement
positive, i.e. j = e*7/3,

Exercice 2.18. Factoriser dans C[X] le polynome X° 4+ 8X* + 26 X3 4+ 44X? + 40X + 16
apres avoir vérifié qu’il admet —2 pour racine.

Exercice 2.19. Factoriser dans C[X] puis dans R[X] le polynome X4 —2X? cos(¢) + 1 ol
¢ est un réel donné.

Exercice 2.20.
(i) Calculer le module et I'argument de z; = (v6 —iv/2)/2 et 2z = 1 —i.
(ii) En déduire le module et 'argument de z = 2z /2.

(iii) Utiliser les résultats précédents pour calculer cos(m/12) et sin(w/12).

Exercice 2.21. Déterminer le module et l'argument de z = (1+1i)/(1—1), puis calculer 2%2.
Exercice 2.22. Déterminer les complexes z vérifiant 2* =i/z.

Exercice 2.23. Résoudre dans C ’équation 2" = z ou n € N*.

Exercice 2.24. Linéariser cos(z) cos?(5z) et sin®(x)cos(4x).

Exercice 2.25. Résoudre dans C 'équation 422 + 8|z|* — 3 = 0.

Exercice 2.26. Déterminer le module et I'argument des nombres complexes
Y1 =14cosx +isinx et y,=1—cosz—isinzx, z€R.
Utiliser ces résultats pour simplifier la fraction y; /ys.

Exercice 2.27. Résoudre dans R les équations
(i) sin(2z) = cos(4x + 7/2);
(ii) cosx +v/3sinz = /2.
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Exercice 2.28. Déterminer les réels t tels que toutes les racines de 1’équation
22— 22 +1=0
solent imaginaires pures.

Exercice 2.29. Soit a un nombre réel. Résoudre dans R 1’équation

1+iz\°  1+ia

l—iz) 1-ia’
Indication : on posera a = tan(«/2) avec a €] —m, 7| et on donnera les solutions en fonction
de a.

Exercice 2.30. Soit a,b € R. Calculer Y, _ (})el@"*) En déduire Y, _, (}) cos(a + bk).

(Z) cos(kx) + Z ( ) sin(kx)
k=0 k=

En déduire les solutions dans R de I’équation

> (Z) cos(kz) = kno (Z) sin(kz)

k=0

Exercice 2.31. Calculer

Exercice 2.32. Soit ¢ un entier fixé, ¢ > 2. Soit z une racine g-ieme de l'unité, z # 1.
pour n > 1, on définit S, = >~ _, 2¥. Montrer que la suite S,, ne prend qu'un nombre fini
de valeurs distinctes. En déduire en fonction de n la valeur de )", _, sin(2k7/3).

Exercice 2.33. Soit n > 2, on considere les nombres complexes (racines niemes de 1'unité)
2e = eZkm/n I = 0,1,...,n — 1. Calculer en fonction de n la somme P, définie par
—1 , . . , o ,

P, =>7"0 |zk4+1 — 2zx|. Déterminer lim,,_,o, P,. Interpréter géométriquement ce résultat.

Exercice 2.34. Soit P le polynome défini par :
P=X"4+(—4+2)X%+ (12 - 8)X* + (4 +261) X — 13

(i) Montrer que —i est une racine du polynoéme P. Préciser son ordre de multiplicité.
(ii) Montrer que P admet une racine réelle. Préciser son ordre de multiplicité.
(iii) Factoriser le polynome P en produit de polynémes irréductibles dans C.
(iv) Soit @ et R le quotient et le reste de la division euclidienne de P par (X +i)2.

(a) En utilisant les questions précédentes déterminer les polynomes @ et R.

b) En déduire la factorisation dans C puis dans R du polynome Q).

b poly
2n—1

Exercice 2.35. Calculer >, " cos®(x + kr/n).
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3 Suites

Définition 14 (Suite réelle ou complexe). Une suite réelle est une application de N dans
R. Une suite complexe est une application de N dans C. L’image d’un entier n par une
suite u a valeurs réelles ou complexes est généralement notée u,, et appelée n-ieme terme
de la suite.

Définition 15 (Suite majorée, minorée, bornée). Une suite réelle u est dite majorée si il
existe un réel A tel que u,, < A pour tout n > 0; elle est dite minorée si il existe un réel
A tel que u,, > A pour tout n > 0; elle est dite bornée si elle est majorée et minorée. Une
suite complexe u est dite bornée si la suite réelle des modules |uy,|, n > 0 est majorée.

Définition 16 (Borne supérieure, borne inférieure). Soit A une partie de R. Si A est
majorée, alors elle admet une borne supérieure. Si A est minorée, alors elle admet une
borne inférieure.

Définition 17 (Suite monotone). Une suite réelle u est dite croissante a partir du rang
ng si pour tout n > ng, u, < u,y1; elle est dite décroissante a partir du rang ng si pour
tout n > ng, u, > u,.1. Elle est dite monotone a partir du rang ng si elle est croissante ou
bien décroissante a partir du rang ny.

Définition 18 (Suite convergente). Une suite a valeurs réelles ou complexes u est dite
convergente si il existe un nombre réel ou complexe ¢ tel que

Ve>0, Inge N, Vn>ng, |u, — ¢ <e€.

On dit alors que la suite u converge, ou tend, vers ¢, et on écrit lim,,_,o, u,, = £.

Remarque La limite d’une suite réelle convergente est un nombre réel. Si une suite
complexe converge, sa partie réelle et sa partie imaginaire forment des suites convergentes,
et la limite de la partie réelle (resp. imaginaire) est la partie réelle (resp. imaginaire) de la
limite.

Théoreme 10. Soit u une suite convergente. Alors u admet une unique limite.
Théoreme 11. Une suite convergente est bornée.

Théoréme 12. Soit u et v deux suites convergentes, { et m leurs limites.
— La suite u + v est convergente et sa limite est £ + m.
— La suite uv est convergente et sa limite est {m.
- Sim #0, la suite u/v est convergente et sa limite est £/m.

Théoreme 13. Soit u une suite convergente ayant pour limite zéro et v une suite bornée.
Alors la suite uv est convergente et a pour limite zéro.
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Définition 19 (Suite divergente). On dit qu'une suite réelle u tend vers +oo si
VAeR, Inge N, Vn>ng,u, > A.
On dit qu’une suite réelle u tend vers —oo si —u tend vers 400, soit
VAeR, Ing e N, Vn>ng,u, < A.
Une suite est dite divergente si elle tend vers +oo ou bien vers —oo.
Définition 20 (Suites géométriques). Une suite u & valeurs complexes est dite géométrique

si il existe un nombre complexe w tel que pour tout n > 0, u,11 = wWu,.

Somme d’une suite géométrique Soit u une suite géométrique de premier terme uy
et de raison w € C. Alors

1 — wn—q—H

n
D=
Jj=q

Soit S la suite définie par S, = 37 u;. Alors si |w| < 1, la suite S est convergente et sa
limite est donnée par

Ug

lim S, =
nggo 1—w

Si |w| > 1 la suite S est divergente. Si la raison w est de la forme w = e*P™/% ou p et ¢
sont des entiers premiers entre eux et p < ¢, alors la suite S est périodique de période ¢.
En effet, w? = 1, et donc 1 +w+---+w?! = 0. La suite S prend donc ¢ valeurs disctintes.

Exemple 3.1. Calculer en fonction de n la valeur de >_;_, e**™/3. Posons w = e%*7/3,

Criteres de convergence

Théoréme 14. Une suite réelle croissante (au dela d’un certain rang ng) et majorée est
convergente. Une suite réelle décroissante (au dela d’un certain rang ng) et minorée est
convergente.

Ce théoreme est une propriété fondamentale de I'ensemble R des nombres réels, et ne
peut pas étre démontré sans avoir construit rigoureusement R a partir de I’ensemble des
nombres rationnels.

Remarque Si la suite u est croissante (au dela d'un certain rang ng) et majorée par le
réel A, alors

lim u, = sup u, < A.
n—oo n>ng
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De méme, si la suite u est décroissante (au dela d’'un certain rang ng) et minorée par le
réel A, alors

lim u, = inf u, > A.
n—o00 n>ng

Corollaire 6. Si une suite est croissante mais non majorée, alors elle tend vers +oco0. Si
une suite est décroissante et non minorée, alors elle tend vers —oo.

Exemple 3.2 (Série harmonique). On appelle série harmonique la suite u de terme général
U, =14+1/24---41/n, n > 1 est croissante mais non majorée donc divergente. En effet,
pour tout n > 1, on a

Jj=n+1
Pour tout entier k£ > 1, on obtient donc

k
Ugk = Uy + Z(UQ]’ —Ugi—1) >2k+ 1.

j=1
La suite u n’est donc pas bornée. Puisqu’elle est croissante, elle tend donc vers +oo.

Définition 21 (Suites adjacentes). Deux suites réelles u et v sont dites adjacentes si u est
croissante, v est décroissante, si la suite v — u est positive et tend vers 0.

Théoreme 15. Deux suites adjacentes sont convergentes et ont la méme limite.

Démonstration. Par hypothese, la suite u est croissante et majorée, et la suite v est
décroissante et minorée, donc les deux suites convergent. Soit f; et /5 leurs limites re-
spectives. Soit € > 0. Par définition de la convergence, et puisque 'on a aussi supposé que
u — v tend vers 0, il existe un entier ng tel que pour tout n > ng, on ait

lup, — 01| < €/3, |v,—Llo] <€/3, |u, —v,| <€/3.
Par 'inégalité triangulaire, on obtient donc
‘61_62‘ S Ml_un|+|un_'vn|+lvn_€2’ SE-

On a donc obtenu que pour tout € > 0, [¢; — f5| < e. Ceci n’est possible que si {1 = {5. On
conclut donc que les deux suites ont la méme limite. O

Exemple 3.3. Soit u la suite réelle définie par

-1y
w=Y

J=0

La suite u est convergente et sa limite est appelée /4.
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L’exemple précédent rentre dans le cadre plus général des séries alternées.

Théoreme 16. Soit u une suite décroissante convergent vers zéro. La suite v définie par
n k
Un = Y po(—1)"uy est convergente.

Démonstration. Les suites s et t définie par s, = v, et t, = v9,,1 sont adjacentes. O

Définition 22 (Suite de Cauchy). Une suite a valeurs réelles ou complexes u est appelée
suite de Cauchy si

Ve>0, 3Ing, Vn,m > ng, |u, —upl <e.
Théoreme 17. Une suite convergente est de Cauchy.
Théoreme 18. Une suite de Cauchy est convergente.
Démonstration. Soit v et w les suites définies par

v, = inf ug , w, = supuy .
k>n k>n

La suite v est croissante et la suite w est décroissante, et pour tout n, on a v, < w,. la
suite v est donc majorée et la suite w est minorée. Montrons que les suites u,, et w, sont
adjacentes, c’est-a-dire que la suite v — w tend vers zéro. Soit € > 0, et soit N tel que pour
tout n,m > N, |u, — u,,| < €. Fixons m > N. On a donc

Yn >N, Uy, — € <u, <u,+E¢e
ce qui entralne que

VYn> N, u, —e€e<infu, <u,+e€.
k>n

Ces inégalités étant valables pour tout m > N, on a donc aussi

VYn > N, supu,, — e < inf u, < sup u,, + €,
m>n k>n m>n

soit
vn>N, w,—€e<uv, <w,+e€,
c’est-a-dire, finalement
Vn >N, |lw, —v,| <e,

ce qui signifie précisément que la suite w — v converge vers 0. Les deux suites v et w sont
donc convergentes et ont la méme limite, notée ¢. Montrons que la suite u converge vers
0. Soit € > 0 et soit N tel que pour tout n > N, on ait simultanément |v, — £| < € et
|w,, — £| < €. Puisque par définition v, < u, < w, pour tout n, on a donc

Vn>N,l—e<v,<u, <w,<l+e€

et donc |u,, — ¢| < € pour tout n > N, ce qui montre que la suite u est convergente, avec ¢
pour limite. ]
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Corollaire 7. Une suite de Cauchy est bornée.

Exemple 3.4. Soit u la suite définie par u,, = 1+ 2% + 3% ceef # La suite u est de Cauchy.
En effet, on a, pour m > n > 0,

"1 - 1 1 1 1
—u, = —< R
fm /{:2_Z(k—1)k n o m>-n

Cette inégalité est vraie pour tout m > n, et puis que 1/(nn!) — 0, pour tout e, il existe
un N tel que pour tout m,n > N, |u,, — u,| < €. La suite u est donc de Cauchy, et donc
converge.

Exemple 3.5. Soit u la suite définie par u,, = 1+ % + % cee 4 % La suite u est de Cauchy
et sa limite est notée e, le nombre tel que log(e) = 1. En effet, on a, pour m > n > 0,

US| 1 2’”: 1
U — Up, = —=—
m n | |
k:n+1k' nl, &= (n+1) x X k
1 — 1 1 (1 1 1
< = — {1 i
_n!k;rl(k—l)k n!{n m}_nxn!

Cette inégalité est vraie pour tout m > n, et puisque 1/(n x n!) — 0, on obtient que pour
tout e, il existe un N tel que pour tout m,n > N, |u,, — u,| < €. La suite u est donc
de Cauchy, et donc converge. La méme majoration permet de montrer que sa limite e est
irrationnelle. Cf. Exercice 3.11.

Notations de Landau

Définition 23. Soit u et v deux suites réelles ou complexes. On dit que u,, = O(vy,) (u est
grand O de v) si

dK >0, Ing e N, Vn >ng, |u,| < Klv,| .
On dit que u, = o(v,) (u est petit o de v) si
Ve>0, dng e N, Vn >ng, |u,| < e€lv,.
On dit que la suite u est équivalent a la suite v a l'infini et ’on note u,, ~ v,, si u,, — v, =
o(uy) et u, — v, = o(vy).
Remarque Ces définitions permettent de considérer des suites dont les termes peuvent
s’annuler. Si les termes de la suite v sont non nuls, alors on a les équivalences
u, = O(v,) <= lasuite u/v est bornée |,
up, = o(v,) <= lim %:O,

n—oo Un

. Unp,
Uy ~ UV, < lim —=1.
n—00 Uy,
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Dire qu’'une suite est O(1) est équivalent a dire qu’elle est bornée; dire qu'une suite est
o(1) est équivalent & dire qu’elle est converge vers 0.

Les exemples fondamentaux

~ Si0 <y <d,alors n? = o(n’) et n=% = o(n°).
— Pour tout 7,8 > 0, (logn)” = o(n’) et n=% = o((logn)™).
— Pour tout 7,6 > 0, n” = o(e) et e~ = o(n™7).

Proposition 11. e Les relations o, O et ~ sont transitives :
— st u, = o(vy,) et v, = o(w,) alors u, = o(w,) ;
— st up = O(vy,) et v, = O(wy,) alors u, = O(wy) ;
— 81 Uy ~ Uy, et v, ~ w, alors u, ~ w,.

e Si est bornée et v, = O(uy,), alors v est bornée.

e Siu est bornée et v, = o(uy,), alors lim,_, v, = 0.

e Siu est bornée et u, = o(v,), alors lim,_,, |v,| = co.

e Siu et v sont des suites positives et u, = o(v,) alors 1/v, = o(1/uy,).

Suites récurrentes

On appelle suite récurrente une suite u telle que u,, soit fonction d'une ou plusieurs
valeurs précédentes. Plus précisemment, un suite u est dite récurrente d’ordre k s’il existe
une fonction f : R¥ — R telle que pour tout n > 0, Uy = f(Unsk—1,...,uy). Une telle
suite est entierement déterminée par la fonction f et les k premieres valeurs ug, ..., ug_1.

Proposition 12. Si f est continue et si la suite réelle u est convergente, alors sa limite ¢
est solution de 'équation f(€) = L. Si f(ug) = wo, alors la suite est constante.

Exemple 3.6. Soit f la fonction définie sur [0,00) par f(x) = /(22 + 7x)/2 — 1 et soit
u la suite récurrente définie par ug > 1 et u, = f(u,). Les limites possibles de la suite u
vérifient 'équation f(z) = x, soit /(22 +7x)/2 — 1 = x, i.e. 2 — 3z + 2 = 0. Les seules
limites possibles sont 1 et 2. Remarquons de plus que l'on a f(z) > x si et seulement si
z? —3x+2 <0, ie x €]1,2]. On a donc les cas suivants.
— Siug =1 ou ug = 2, la suite u est constante.
— Six > 2 alors 2 < f(z) <2 et donc si up > 2, 0na2< f(u,) < u, pour tout n, et
donc la suite est décroissante et minorée, donc convergente, et sa limite est donc 2.
-Sil<z<2 onal<z< f(r) <2 et donc siuy €]1,2[, alors pour tout n on a
1 < u, < upy1 < 2. La suite u, est croissante et majorée, donc convergente, et sa
limite est donc 2.
Remarquons enfin que si 0 < x < 1, alors f(x) < z, et donc si uy €0, 1], la suite u est
décroissante. Mais il existe un n tel que u? + 7u, < 0, et donc la suite u n’est pas définie
pour tout n.
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Comme dans l'exemple précédent, I'étude des suites récurrentes générales repose sur
des propriétés de monotonie.

Théoréme 19. Soit f une fonction continue sur un intervalle I (non réduit a un point) et
admettant un unique point fixe x* dans I. Soit u la suite définie par la donnée de uy € I et
Unt1 = f(un) et soit g la fonction définie sur I par g(z) = f(x) —x. Si g est décroissante
sur [z*,00[NI et croissante sur | — oo, x*| N 1, alors la suite u converge vers x*.

Si f est de plus dérivable, on peut obtenir une vitesse de convergence.

Théoréme 20. Soit [ une fonction continument dérivable sur un intervalle I (non réduit
a un point), admettant le point fize x* dans I et telle que |f'(z)| < 1 sur I. Soit u la suite
définie par la donnée de ug € I et up,i1 = f(uy,). Alors la suite u converge vers x* et il
existe une constante positive C' et un nombre réel r € [0, 1] tel que |u, — x| < Cr™.

Exemple 3.7. Considérons la fonction f(z) = log(xz+3) et la suite u définie par la donnée
de ugp et u,11 = f(uy,). La fonction f est définie sur | — 3, 00[ et admet un unique point
fixe x* (z* ~ 1.5052415). Le graphe de la fonction f est donné Figure 4. Le point fixe x*
correspond a l'intersection du graphe de f et de la droite y = x. Les premieres valeurs de la
suite u pour ug = 5 et up = 0 sont données Table 1. La dérivée de f est f'(x) = 1/(z+ 3).
On a donc f’(z) < 1 si et seulement si > —2. La suite est donc convergente pour tout
choix de uy > —2 et sa limite est z*. On voit que la convergence est tres rapide. Comme
la fonction f est de plus concave (c’est-a-dire que sa dérivée est décroissante), on obtient
que si ug > z*, on a0 <wu, —z < (up— z*)(z* + 3)™" pour tout n > 0.

5 2.0794415 1.6252013 1.5315199 1.5110574 1.5065316 1.5055278 1.505305
1.5052556 1.5052446 1.5052422 1.5052417 1.5052415 1.5052415 1.5052415

0 1.0986123 1.4106485 1.4840217 1.5005203 1.504193  1.5050087 1.5051898
1.50523 1.505239  1.5052409 1.5052414 1.5052415 1.5052415 1.5052415

TABLE 1 — Les quinze premieres valeurs de la suite u pour uy = 5 et ug = 0.

Equations de récurrence linéaire
On considere des équations de récurrence linéaire du type
Untq = AG1Untq—1 + - AqlUn

ou ay,...,a, sont des nombres complexes non tous nuls. L’étude des solutions de ce type
de suite passe par I'étude des solutions du polynome P appelé polynome caractéristique
de I’équation, défini par

P=X7— iaini .
i=1

Considérons tout d’abord le cas le plus simple ou P admet ¢ racines distinctes, réelles ou
complexes.
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y=log(x+3)

FIGURE 4 — Le graphe et le point fixe de la fonction f(z) = log(z + 3).

Proposition 13. Si le polynome caractéristique de [’équation admet q racines distinctes
AL, ..., g, réelles ou complexes, alors les solutions de l'équation de récurrence uniq =
1 Upyq—1 + - QqUy, sont de la forme

q
Uy, = E ;i\
i=1

ou les constantes ay, . .., a, sont déterminées par les conditions initiales uo, ..., u,—1 (ou
par n’importe quel q-uplet de valeurs successives de la suite ug, . .., Ugiq—1)-

Exemple 3.8. Soit u la suite définie par I'équation de récurrence wu, = u,_1 + u,_o (suite
de Fibonacci). Le polynome caractéristique est P = X? — X — 1, dont les racines sont
(1 ++/5)/2 et (1 —+/5)/2. La racine positive (1 + /5)/2 est appelée nombre d’or. Les
solutions sont donc de la forme u, = a((1 + v/5)/2)™ + b((1 — +/5)/2)". Soit ug et u; les
deux premieres valeurs (arbitraires). On doit avoir

wy=a+b, u =al+v5)/2+0b(1—-5)/2
soit
V5 ’ V5 ‘
Exemple 3.9. Soit v la suite définie par ’équation de récurrence u, + u,_1 + U,_2 = 0.
Le polynome caractéristique est X2 + X + 1, dont les racines sont j = (—1 4 iv/3)/2 et j?

(les racines cubiques de I'unité). Les solutions sont donc de la forme u,, = aj" + bj*". Soit
up et uy les deux premieres valeurs (arbitraires). On doit avoir

uy=a+b, u =aj+bj’
soit, en remarquant que 1 +j+j? = 0 et que j% = j,

_Uo—wj U — "
- -]



Remarquons que si ug et uq sont réels, alors tous les termes de la suite doivent étre réels.
Or, si ugp et uy sont réels, les coefficients a et b sont conjugués. Les solutions sont donc de
la forme 2Re(aj"™), i.e. sont réelles.

Dans le cas ou le polynome P a des racines multiples, on peut alors écrire

P =

1

(X =)™,

k
=1

ou m; > 1 est la multiplicité de la racine \;. Les solutions ont la forme

k
Up = Z Pi(n)A?
i=1
ou le polynome P; est de degré m; — 1.

Vitesse de convergence

Définition 24. Soit v une suite réelle décroissant vers 0 et soit u une suite (réelle ou
complexe) convergente de limite ¢. On dit que la suite u converge converge vers sa limite
a la vitesse v si |u,, — €| = O(vy,).

Exemple 3.10. La suite u de I'exemple 3.3 converge vers sa limite 7/4 a la vitesse 1/n.

3.1 Exercices

Exercice 3.1. Soit u et v deux suites & valeurs dans [0, 1] telles que lim,, . u,v, = 1.
Montrer que lim,,_,o u, = lim,,_, u, = 1.
Exercice 3.2. Soit u une suite et ¢ un réel tels que lim,, o (u, — up_1) = £.

(i) Montrer que lim,_ o n ', = /.

(ii) Si ¢ 0, montrer que Y p_, uy ~ 20n?.

Exercice 3.3. (i) Calculer en fonction de n > 2 la somme ), _, @

ii) En déduire que la suite u définie pour n > 1 par u, = > _,_, -z est majorée.

i) En dédui la suite v défini > 1 " est majoré

(iii) En déduire qu’elle converge.

iv) Soit ¢ sa limite (qu’on ne cherchera pas a déterminer). Montrer que u, —¢ = O(n™").

iv) Soit ¢ sa limite (qu’ herch a détermi Mont {=0(Mn""
) r

(v) Montrer que pour tout r > 2, la suite v définie pour n > 1 par v, = 1+27"+---+n"
est convergente.
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Exercice 3.4. Le but de cet exercice est de prouver que la suite u définie par
1 1
Up=1+=4+---+——logn
2 n

est de Cauchy. On rappelle I'inégalité, valable pour tout u € [0, 1],

L,

<
14+uw = 2

0 <log(l+u)—

Soit v la suite définie pour n > 1 par v,, = Up i1 — Up.
(i) Montrer que v, = 5 —log(1+ 1).
(ii) Montrer que pour tout n > 2, 0 < —uv,, < <A

) 277,2 —
)
)
)

En déduire que pourm >n > 1, ona0 < —v,.1 — - — v, < 1/n.
(v) En déduire que 1+ 3 + -+ + = = O(logn).

3=

(iii
(iv) En déduire que la suite u est de Cauchy.

Exercice 3.5 (Moyenne de Cesaro). Soit u une suite réelle convergente et soit ¢ sa limite.
Soit v la suite définie par v, = (uy +ug + - - - + u, ) /n, appelée la moyenne de Cesaro de la
suite u.

(i) Montrer que v, — ¥ = {(u; — €) + (ug — £) + -+ - + (u,, — £)} /n.
(ii) Montrer que pour tout € > 0, il existe un entier ng tel que pour tout n > ny,

no

1
— <= — .
[on =€) < = > fup — €] + ¢
k=1
(iii) En déduire que la suite v converge vers /.

(iv) Donner un exemple de suite u divergente mais telle que sa moyenne de Césaro soit
convergente.

Exercice 3.6. Soit u une suite réelle convergente et soit A sa limite. Soit v la suite définie
par v, = (u; + 2us + -+ 4+ nu,)/n(n + 1). On rappelle que pour tout entier n > 1,
Yo k=n(n+1)/2.

(i) Montrer que v, — \/2 = (“1_’\)H(UZ(_R’YY)WJF"(U"_>‘).

(ii) Montrer que pour tout € > 0, il existe un entier ny tel que pour tout n > ny,

[on = A/2] S ——— Znokyuk A+ ——— Zk

(iii) En déduire que la suite v converge vers /2.
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Application. Montrer que la suite v définie par

1 i 2k? + 3sin(k)
3k+5

Up =
n(n+1) <

est convergente et déterminer sa limite.

Exercice 3.7 (Généralisation de la sommation de Cesaro). Soit ¢ une suite a termes positifs

telle que Y, _, tx = co. Soit u une suite admettant la limite ¢. Montrer que

D g e

lim =——=1/.

n—00 Ek:l tk
Exercice 3.8. Calculez les trois premiers termes, puis le terme général de chacune des
suites récurentes suivantes et déterminez sa limite (si elle existe).

(i) uo=1,uy =1, Upqo = Up + Un1.

ug =1, uy = 2, Upyo = OUy — Upyq.
Ug = ]., uy = 0 Up42 = —2Un + 3un+1.
up =1, uy =1, Upio = —Up + 2Up41.

)
)
)
(V) up =1, ug = 2, Upyo = — Uy — 2Upy1.
)
)
)
)

(Vi) up =1, w3 =0, upro = —4u, + 4ty41.
(vii) ug =1, ug = 1, Unso = —V/2Up + 2p 1.
(vill) ug =1, ug = 2, Upto = —Upy + Upy-

(ix) up=1,u; =0, Upio = —Up — Ups1.

Exercice 3.9. Etudier la suite u définie par ug > 0 et u,1q =/ (u2 + Tu,,)/2 — 1.

Exercice 3.10. Soient a,, et b, les suites définies de la fagon suivantes :
ap = 2, bO =1, an = (an—l + bn—l)/2a anbn = 2.

(i) Montrer que ces deux suites sont bien définies, que a, est décroissante, b, est crois-
sante, et Vn € N, a,, < b,.

(i) Montrer que Vn € N, 0 < a,, — b, < (a,_1 — b,_1)?/4.

(iii) En déduire que a, et b, sont adjacentes et convergent vers v/2.

Exercice 3.11. On considere la suite u définie par u, = >, _, % (en posant par convention
0! = 1). Le but de I'exercice est de montrer que la suite u de Cauchy et que sa limite, notée e,
est irrationnelle.

L1
k!

1

n!*

(i) Montrer que pour tout m >n > 1, 3" . & <
(ii) En déduire que la suite u est de Cauchy.

(iii) Soit e la limite de la suite u. Montrer que pour tout n > 1, on a u,, < e < u,+1/(n!).
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(iv) On suppose qu’il existe deux entiers p et ¢ premiers entre eux (sans diviseurs com-
muns) tels que e = p/q. Montrer qu’il existe alors un entier n tel que nle soit un
entier pour lequel on a nlu, < nle < nlu, + 1. Conclure que e est irrationnel.

Exercice 3.12. Soient a, b, ¢, d des nombres complexes tels que ad — bc # 0. Soit f la
fonction (appelée homographique) définie sur C par h(z) = (az +b)/(cz + d).
(i) Déterminer, lorsqu’elle existe la réciproque de h.
(ii) Résoudre dans C I’équation h(z) = z.
(iii) On suppose dans toute la suite que a, b, ¢, d sont réels avec ad — be = 1. Tracer le
graphe de la restriction de h a R.
(iv) Soit u la suite définie par :
auy, +b
cu, +d -

uy # —d/c, Upp1 = h(u,) =

Etudier la suite w,, dans les cas suivants.

(a) c=0cet |a| = 1.

(b) c=0et|a| <1

(¢c) c=0cet|a| > 1.

(d) ¢ # 0. On posera alors w,, = cu, + d et I'on supposera que a +d > 2 et
ug ¢ [(a + d)~1;2[. (Pourquoi?)

Exercice 3.13. Soit a > 0 et soit u la suite réelle définie par ug # 0 et

1 a
Up+1 = 5 <un+u_> .

On définit sur R la fonction f par f(z) = (z +a/x)/2, z > 0.
(i) Montrer que pour tout z > 0, = # /a, f(x) > /a.
(ii) Montrer que si x > \/a, alors f(x) < z.
(iii) En déduire que pour tout n > 1, u, > \/a et la suite u est décroissante a partir du
rang 1.

) Montrer que pour tout z > 0, f(z) — v/a = (z — \/a)?/(2x).

(v) En déduire que pour tout n > 1, 0 < u,1 — va < (u, — va)*/(2\/a).

) En déduire que la suite u converge vers a.

(vil) Montrer que pour tout v > 0, u, — v/a = O(y").

Exercice 3.14. Soit u et v deux suites réelles dont les termes sont strictements positifs.
(i) Montrer que si u, a une limite non nulle ¢ et u,, ~ v, alors lim,, ., v, = ¢.
(ii) Montrer que si u,, = O(v,) alors uf. = O(v) pour tout p > 0.

(iii) Montrer que si u, ~ v, alors uf ~ v2 pour tout p > 0.

)

(iv) On pose u, = n et v, = n + /n. Montrer que u,, ~ v, mais les suites a et 3 définies
par «,, = e“" et 3, = e'" ne sont pas équivalentes.
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