Corrigé de l'examen de septembre 2006

Exercice 1

1)
$$L_{\theta}(x_1,...,x_n) = (1 - \frac{1}{\theta})^{\sum_{i=1}^n x_i - n} \frac{1}{\theta^n} \prod_{i=1}^n \mathbf{1}_{x_i > 1}$$

 L_{θ} est dérivable par rapport à θ .

Si tous les $x_i > 1$, on peut écrire

$$ln(L_{\theta}(x_1, ..., x_n)) = (\sum_{i=1}^{n} x_i - n)(ln(1 - \frac{1}{\theta})) - n \ ln(\theta).$$
$$\frac{\delta ln(L_{\theta})}{\delta \theta} = \frac{1}{\theta^2} \frac{\sum_{i=1}^{n} x_i - n}{1 - \frac{1}{\theta}} - \frac{n}{\theta}.$$

Cherchons
$$\hat{\theta}_n$$
 tel que $\frac{\delta ln(L_{\theta})}{\delta \theta} = \frac{1}{\hat{\theta}_n^2} \frac{\sum_{i=1}^n x_i - n}{1 - \frac{1}{\hat{\theta}_n}} - \frac{n}{\hat{\theta}_n} = 0.$

D'où $\hat{\theta}_n = \bar{x}_n$ est un extremum. Vérifions que c'est un maximum.

$$\frac{\delta^2 ln(L_{\theta})}{\delta^2 \theta} = (\sum_{i=1}^n x_i - n) \frac{1 - 2\theta}{(\theta^2 - \theta)^2} + \frac{n}{\theta^2} \text{ qui prend comme valeur en } \hat{\theta}_n: \\ -\frac{n}{\hat{\theta}_n^2(\hat{\theta}_n - 1)} < 0$$

On a donc montré que $\hat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$ est l'emv de θ .

- 2) $E(\hat{\theta}_n) = E(X) = \theta$ donc $\hat{\theta}_n$ est un esb de θ .
- 3) Comme $\hat{\theta}_n$ est un esb de θ , le risque quadratique est donné par $R_{\theta} = Var(\hat{\theta}_n) = Var(X)/n = \frac{\theta^2 \theta}{n}$ qui converge vers 0 quand n tend vers l'infini, donc $\hat{\theta}_n$ est un estimateur convergent de θ .
- 4) $I_n(\theta) = -E(\frac{\delta^2 ln(L_{\theta}(X_1,...,X_n)}{\delta^2 \theta}) = \frac{n}{\theta^2 \theta} = \frac{1}{Var(\hat{\theta}_n)}$ donc $\hat{\theta}_n$ est un estimateur efficace de θ .
- 5) On peut appliquer le théorème central limite à l'échantillon $(X_1, ..., X_n)$. Alors $Z = \frac{\bar{X}_n E(\bar{X}_n)}{\sqrt{var(\bar{X}_n)}} = \sqrt{n} \frac{\hat{\theta}_n \theta}{\sqrt{\theta(\theta 1)}}$ suit approximativement une loi N(0, 1).
- 6) Pour construire l'intervalle de confiance pour θ , on utilise un bon estimateur de θ . Soit donc $\hat{\theta}_n$ un estimateur convergent de θ . Cherchons maintenant une fonction pivotale fonction de $\hat{\theta}_n$. Soit $Z = \sqrt{n} \frac{\hat{\theta}_n \theta}{\sqrt{\theta(\theta 1)}}$ qui suit approximativement une loi

N(0,1) d'après la question précedente, Comme n > 30.

Posons 0.95 = P(-1.96 < Z < 1.96).

D'où $\bar{x}_n - 1.96 \sqrt{\frac{\theta^2 - \theta}{n}} < \theta < \bar{x}_n - 1.96 \sqrt{\frac{\theta^2 - \theta}{n}}$ et on remplace θ dans les bornes de l'intervalle par \bar{x}_n et on obtient:

$$\bar{x}_n - 1.96 \sqrt{\frac{\bar{x}_n^2 - \bar{x}_n}{n}} < \theta < \bar{x}_n - 1.96 \sqrt{\frac{\bar{x}_n^2 - \bar{x}_n}{n}}$$

D'où:

$$12.1597 < \theta < 17.8403$$

Exercice 2

On veut tester les hypothèses suivantes, pour un niveau 1%:

$$H_0: m = 50$$

contre $H_1: m < 50$

1) Sous H_0 , la v.a $Z=\sqrt{n} \frac{\bar{X}_n-m}{\sigma}$ suit une loi N(0,1).

La région de rejet est donnée par $W = (\bar{X}_n < K)$.

D'où,
$$K = 50 - 2,326 \frac{\sigma}{\sqrt{n}} = 42,6445$$

Comme $\bar{x}_n = 48 > 42,6445$ n'est pas dans la région de rejet, on ne rejette pas au niveau 1% l'hypothèse H_0 .

2) Sous H_0 , la v.a $Z=\sqrt{n}\frac{\bar{X}_n-m}{\hat{S}_n}$ suit une loi de Student St(9).

La région de rejet est donnée par $W = (\bar{X}_n < K)$.

D'où,
$$K = 50 - 2,821 \frac{\hat{s}_n}{\sqrt{n}} = 40.5966$$
 avec $\hat{s}_n = 10 \sqrt{\frac{10}{9}} = 10,541$.

Comme $\bar{x}_n = 48 > 40.5966$ n'est pas dans la région de rejet, on ne rejette pas au niveau 1% l'hypothèse H_0 .

3) Sous H_0 , la v.a $Z=\sqrt{n} \frac{\bar{X}_n-m}{\hat{S}_n}$ suit une loi de Student St(199).

La région de rejet est donnée par $W = (\bar{X}_n < K)$.

D'où,
$$K = 50 - 2,326 \frac{\hat{s}_n}{\sqrt{n}} = 48.347 \text{ avec } \hat{s}_n = 10 \sqrt{\frac{200}{199}} = 10,025.$$

Comme $\bar{x}_n=48<48.347$ est dans la région de rejet, on rejette au niveau 1% l'hypothèse H_0 .

Exercice 3

1) On veut tester au niveau 1%:

 H_0 : l'opinion vis à vis de la réforme ne diffère pas suivant le type d'emploi contre H_1 : l'opinion vis à vis de la réforme diffère suivant le type d'emploi

On construit le tableau des effectifs théoriques sous H_0 :

	ouvriers	cadres moyens	cadres supérieurs
favorable	188, 1	49, 5	26, 4
opposé	96,9	25, 5	13,6

Sous H_0 , comme n_1 et $n_2 \geq 30$ et que les effectifs théoriques sont supérieurs à 5.

$$T_n = \sum_{i=1}^k \sum_{j=1}^l \frac{\left(N_{ij} - \frac{n_{i.}n_{.j}}{n}\right)^2}{\frac{n_{i.}n_{.j}}{n}}$$
suit approximativement une loi $\chi^2(2)$.

La région de rejet, au niveau 1% de la forme

$$W = (T_n \ge 9, 21)$$

On calcule la valeur de T_n sur l'échantillon et on obtient $t_n = 2,623$. Comme $t_n < 9,21$ n'est pas dans la région de rejet, on rejette au niveau 1% l'hypothèse que dans l'entreprise l'opinion vis à vis de la réforme diffère suivant le type d'emploi.

2) Soit n = 115 le nombre de cadres, notons p la probabilité qu'un individu soit favorable à la réforme. On veut tester au niveau 1%: $H_0: p = 0, 5$ contre $H_1: p > 0.5$.

Sous H_O , la v.a $Z = \sqrt{n} \frac{\bar{X}_{n-0,5}}{\sqrt{0,5}}$ suit une loi N(0,1).

La région de rejet est donnée par $W = (\bar{X}_n > K)$

$$0,01 = P_{H_0}(\bar{X}_n > K)$$

D'où,
$$K = 0, 5 + 2, 33\sqrt{\frac{0,5}{n}} = 0, 6.$$

On calcule la valeur de \bar{X}_n sur l'échantillon et on obtient $x_n = 0,7$. Comme $\bar{x}_n > 0,6$ est dans la région de rejet, on ne rejette pas au niveau 1% l'hypothèse que chez les cadres (moyens ou supérieurs) de l'entreprise, un majorité est favorable à la réforme proposée .