Licence de Sciences économiques et gestion deuxième année Corrigé de l'épreuve de contrôle continu de Probabilité du 20 mai 2006

Tous documents et tous matériels électroniques interdits.

REPONDRE DANS LES CASES PREVUES A CET EFFET DUREE 1 HEURE 15

Questions de cours

1. Enoncer la formule des probabilités totales.

Soit $\{A_1, A_2, \ldots\}$ une partition de l'espace Ω muni d'une probabilité P et soit B un événement. Alors

$$P(B) = P(B \mid A_1)P(A_1) + P(B \mid A_2)P(A_2) + \dots$$

2. Enoncer la formule de Bayes.

Soient A et B deux événements de probabilité non nulle. Alors

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}.$$

Exercice 1. Une poule bonne pondeuse pond chaque semaine plus de 2 œufs avec probabilité 70%, un seul œuf avec probabilité 20% et aucun œuf avec probabilité 10%. Une mauvaise pondeuse pond au moins un oeuf avec la probabilité 60% et aucun oeuf avec la probabilité 40%. La proportion de bonnes pondeuses est de 80%.

(i) Calculer la probabilité pour qu'une poule, prise au hasard, ponde au moins un œuf. Donner le nom de la formule utilisée.

On note B l'événement "la poule est bonne pondeuse", M "la poule est mauvaise pondeuse, O "la poule pond au moins un oeuf". De l'énoncé on déduit que $P(O \mid B) = 0, 9$ et $P(O \mid B) = 0, 4$. Par la formule des probabilités totales, on obtient

$$P(O) = P(O \mid B)P(B) + P(O \mid M)P(M) = 0,9 \times 0,8 + 0,6 \times 0,2 = 0,84$$
.

(ii) Marguerite n'a pas pondu d'œuf cette semaine. Quelle est la probabilité pour qu'elle soit une mauvaise pondeuse (ce qui la conduirait à un sort funeste). Donner le nom de la formule utilisée.

De la question précédente on déduit $P(O^c)=0,16.$ On a aussi $P(O^c\mid M)=0,4.$ Par la formule de Bayes on a :

$$P(M \mid O^c) = P(O^c \mid M)P(M)/P(O^c) = 0,4 \times 0,2/(0,16) = 1/2$$

Exercice 2. Dans une urne contenant 5 boules rouges et 3 boules vertes, on tire sans remise 3 boules. On note X le nombre de boules rouges tirées.

(i) Quelles sont les valeurs prises par X?

X prend les valeurs 0, 1, 2 et 3.

(ii) Déterminer la loi de X.

Il s'agit d'un tirage sans remise, donc, pour $i=0,1,2,3,\ P(X=i)=C_5^iC_3^{3-i}/C_8^3.$ Soit :

P(X = 0) = 1/56, P(X = 1) = 15/56, P(X = 2) = 30/59, P(X = 3) = 10/56. Vérification : 1+15+30+10=56.

(iii) Calculer $P(X \le 1)$.

$$P(X \le 1) = P(X = 0) + P(X = 1) = 16/56 = 2/7.$$

Détailler les calculs.

Exercice 3. Soit X une variable aléatoire prenant les valeurs -3, 1 et 2 avec la même probabilité 1/3.

(a) Calculer E[X].

$$E[X] = (-3 + 1 + 2)/3 = 0.$$

(b) Calculer E[|X|].

$$E[|X|] = (3+1+2)/3 = 2.$$

(c) Calculer Var(X).

$$Var(X) = E[X^2] - (E[X])^2 = E[X^2] = (9 + 1 + 4)/3 = 14/3$$

Détailler les calculs.