Exercice 1

1-
$$E(\bar{X}_n) = m = 30 \text{ et } V(\bar{X}_n) = \frac{\sigma^2}{n} = \frac{36}{n}.$$

2- Si $n \leq 30$, la loi de \bar{X}_n est inconnue. Si n > 30, on peut appliquer le théorème central limite à l'échantillon $(X_1,...,X_n)$: ainsi $Z = \frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{V(\bar{X}_n)}} = \sqrt{n} \frac{\bar{X}_n - 30}{\sqrt{36}}$ suit approximativement une loi N(0,1).

3 - Comme
$$n > 30$$
, $P(\bar{X}_n < 28) = P(Z < -2, 33) \simeq 0, 01$.

4 - Pour construire l'intervalle à risques symétriques de \bar{X}_n , on utilise la variable aléatoire $Z=\sqrt{100}~\frac{\bar{X}_n-30}{\sqrt{36}}$ qui suit approximativement une loi N(0,1) par le théorème central limite.

Posons $0.9 = P(a < \bar{X}_n < b) = P(-t < Z < t)$ où le quantile t = 1,645 est lu dans la table de la loi normale.

D'où 29,013 $< \bar{X}_n < 30,987.$

Exercice 2

1)
$$\bar{x}_n = \frac{6014}{15} = 400,93 \text{ et } \hat{s}^2 = \frac{15}{14} \left(\frac{2563408}{15} - (400,93)^2 \right) = 10871,067$$

2) Pour construire l'intervalle de confiance pour m, on utilise un bon estimateur de m: \bar{X}_n estimateur convergent de m. Soit $Z = \sqrt{n} \frac{\bar{X}_n - m}{\hat{s}}$ suit une loi de student T(14).

Posons $0.95 = P(a < \bar{X}_n < b) = P(-t < Z < t)$ où le quantile t = 2,145 est lu dans la table de la student(14).

D'où 343, 19 < m < 458, 68.

Exercice 3

Α.

1- α = risque de supposer que l'objectif qualité n'est pas atteint alors qu'il l'est, ce qui oblige à refaire la production pour rien.

 β = risque de supposer que l'objectif qualité est atteint alors qu'il ne l'est pas, ce qui entraine la livraison alors que la livraison est défectueuse.

2- Quelle variable utilise-t'on pour construire ce test ? \bar{X}_n avec X=1 si l'article tiré est conforme avec la probabilité p et 0 sinon avec la probabilité 1-p.

Comme n > 30, $np_0 = 100 * 0.05 \ge 5$ et $n(1-p_0) \ge 5$ on peut appliquer le théorème central limite à l'échantillon $(X_1, ..., X_n)$ de loi de bernoulli(p):

ainsi
$$Z = \frac{\bar{X}_n - E(\bar{X}_n)}{\sqrt{V(\bar{X}_n)}} = \sqrt{100} \frac{\bar{X}_n - 0.05}{\sqrt{0.05 * 0.95}}$$
 suit approximativement une loi $N(0, 1)$.

3-
$$W = (\bar{X}_n > K)$$
 et $\alpha = 0.1 = P_{H_0}(W) = P_{H_0}(Z > \sqrt{100} \frac{K - 0.05}{\sqrt{0.05 * 0.95}}).$

D'où $K = 0.05 + 1.285 * \frac{\sqrt{0.05 * 0.95}}{10} = 0.078$. On rejette H_0 c'est à dire qu'on considère la livraison non conforme au risque 10% si $\bar{X}_n > 0.078$.

 $\bar{x}_n = \frac{7}{100} < 0.078$, on ne rejette donc pas H_0 et la livraison peut être considérée conforme au risque 10%.

4- $\beta = P_{H_1}(\bar{W}) = P_{H_0}(Z \leq \sqrt{100} \frac{0.078 - 0.1}{\sqrt{0.1 * 0.9}}) = 0.2177$. La puissance du test est $\eta = P_{H_1}(W) = 0.7823$ = probabilité pour le fournisseur de considérer la commande non conforme à bon escient.

B. 1-
$$W = (\bar{X}_n < K)$$
 et $\alpha = 0.1 = P_{H_0}(W) = P_{H_0}(Z < \sqrt{100} \frac{K - 0.1}{\sqrt{0.1 * 0.9}}).$

D'où $K = 0.1 - 1.285 * \frac{\sqrt{0.1 * 0.9}}{10} = 0.0615$. On rejette H_0 c'est à dire qu'on considère la livraison conforme au risque 10% si $\bar{X}_n < 0.0615$.

2- $\bar{x}_n = \frac{7}{100} > 0.0615$, on ne rejette donc pas H_0 et la livraison ne peut être considérée conforme au risque 10%.

 α = risque de supposer que l'objectif qualité est atteint alors qu'il ne l'est pas.

 β = risque de supposer que l'objectif qualité n'est pas atteint alors qu'il l'est.

C. Comparer les conclusions du fournisseur et de l'entreprise E sur un même échantillon: elles sont contradictoires. Y a-t-il des situations de litige ? oui pour toutes les valeurs

 $0.0615 \le \bar{x}_n \le 0.078$

Exercice 4

Test d'ajustement

On veut tester au niveau 5%:

$$H_0: P = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$
 contre
 $H_1: P \neq (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

On construit le tableau des effectifs théoriques sous H_0 :

$$\begin{array}{c|cccc} Couleur & A & B & C \\ \hline Effectif & 38 = \frac{114}{3} & 38 & 38 \\ \end{array}$$

Sous H_0 , comme $n=114 \geq 30$ et que les effectifs théoriques sont supérieurs à 5,

$$T_n = \sum_{i=1}^{3} \frac{(N_i - 38)^2}{38}$$
 suit approximativement une loi $\chi^2(2)$.

La région de rejet, au niveau 5% est de la forme

$$W = (T_n \ge 5.99)$$

On calcule la valeur de T_n sur l'échantillon et on obtient $t_n < 5.99$ qui n'est pas dans la région de rejet, on rejette au niveau 5% l'hypothèse qu'il y a un effet de l'exposition répetée.