Simulation de Monte-Carlo / Comparaison de lois

Thierry Fouque

Dans les cellules B5 à B8, vous devez créer 4 variables aléatoires (ou hypothèses en langage Crystal Ball) suivant les lois et les paramètres ci-dessous (les paramètres numériques sont déjà saisis dans la feuille de calcul « Lois.Xls ») :

$$Uniforme^1 \sim U\big(Min = 0; Max = 2\sqrt{3}\big)$$

$$Triangulaire^2 \sim T\big(Min = 0; Mode = \sqrt{2}\sqrt{3}; Max = 2\sqrt{2}\sqrt{3}\big)$$

$$Normale \sim N(Moyenne = 0; Ecart - type = 1)$$

$$Exponentielle^3 \sim E(\lambda = 1)$$

Question n°1: créez ensuite 4 variables de prévision (cellules B12 à B15 – Prév_Uniforme, Prév_Triangulaire, Prév_Normale et Prév_Exponentielle) issues des 4 hypothèses précédentes mais en soustrayant systématiquement à chacune (à l'aide d'une formule Excel donc) la valeur de sa moyenne⁴. Ajoutez une cinquième variable de prévision faisant la somme des quatre précédentes (cellule B16 – Prév_Total). Sauvegardez le résultat dans le fichier Lois_Q1.Xls.

Question n°2 : après avoir exécuté la simulation, comparez entre elles toutes les statistiques⁵ des quatre variables de prévision (Prév_Uniforme, Prév_Triangulaire, Prév_Normale et Prév_Exponentielle⁶). Sauvegardez les dans le fichier Lois Q2.XIs.

Question n°3 : introduisez la matrice des corrélations ci-dessous et sauvegardez le résultat dans le fichier Lois_Q3.XIs. Comparez la moyenne et l'écart-type des cinq variables de prévision sans et avec les corrélations. La prise en compte des corrélations modifie-t-elle les statistiques des cinq variables de prévision ?

	Hyp_Uniforme	Hyp_Triangulaire	Hyp_Normale	Hyp_Exponentielle
Hyp_Uniforme	1.000	0.700	-0.800	-0.600
Hyp_Triangulaire		1.000	-0.850	-0.700
Hyp_Normale			1.000	0.900
Hyp_Exponentielle				1.000

¹ La moyenne d'une loi uniforme et sa variance sont telles que : $\mu = \frac{Min + Max}{2}$ et $\sigma^2 = \frac{(Max - Min)^2}{12}$ ² La moyenne d'une loi triangulaire et sa variance sont telles que : $\mu = \frac{Min + Mode + Max}{3}$

² La moyenne d'une loi triangulaire et sa variance sont telles que : $\mu = \frac{Min+Mode+Max}{3}$ et $\sigma^2 = \frac{Min^2+Mode^2+Max^2-2\cdot Min\cdot Mode-2\cdot Min\cdot Max-2\cdot Mode\cdot Max}{3}$

³ La moyenne d'une loi exponentielle et sa variance sont telles que : $\mu = \frac{1}{\lambda}$ et $\sigma^2 = \frac{1}{\lambda^2}$

 $[\]sqrt[4]{3}$ pour la loi uniforme (cellule H5), $\sqrt{2} \cdot \sqrt{3}$ pour la loi triangulaire (cellule H6), 0 pour la loi normale (cellule H7) et 1 pour la loi exponentielle (cellule H8).

⁵ Et notamment les moyennes, variances (écart-type), coefficients d'asymétrie et d'aplatissement.

⁶ La prévision Prév Total ne sera pas prise en compte dans la comparaison.